Kq ueu emad_ness

by Randall Stewart

ome time ago | was asked to participate in the creation of a Performance

Enhancing Proxy (PEP) for TCP. The concept behind a PEP is to split a TCP connec-
tion into three separate connections. The first connection (1) is the normal TCP con-
nection that goes from the client towards the server (the client is usually unaware that
its connection is not going to the end server). The next connection (2) goes between
two middle boxes (M1 and M2), the first middle box (M1) terminates the connection
of the client pretending to be the server and uses a different connection to talk to the
tail middle box (M2). This middle connection provides the “enhanced” service to the
end-to-end connection. The final connection (3)
goes between the tail middle box (M2) and the
actual server. The figure below shows a
diagram of such a connection.

i 3

e p—— YT YY)

Now, as you can imagine, if you have a very
busy PEP you could end up with thousands of
TCP connections being managed by M1 and
M2. In such an environment using poll(2) or
select(2) comes with an extreme penalty. Each
time a I/0O event completes, every one of those
thousands of connections would need to be
looked at to see if an event occurred on them,
and then the appropriate structure would need
to be reset to look for an event next time. A
process using such a setup can find itself quickly
spending most of its time looking at and fiddling
with the data structures involved in polling or
selecting and has very little time for anything
else (like doing the real work of handling the
connections).

| arrived on this project late, but the team
that was working on it had chosen to use a
kqueue(2) instead of select(2) or poll(2). This, of
course, was a very wise choice since they want-
ed to optimize the process to handle thousands
of connections. The team used multiple kqueues
and multiple threads to accomplish their end
goal, but this in itself was another problem
(when it came time to debug the process) since
each kqueue had multiple threads and there
were a lot of kqueues in the architecture.
Depending on the number of cores in the hard-
ware, the number of threads would increase or
decrease (one thread for each kqueue for each
core). This meant that in the first version of the
software, a process might have over one hun-
dred threads. After helping stabilize and ship the
product | knew we had to improve things and
this is where my dive into kqueue madness
began.

In the re-architecture, | decided that | wanted to:

1. Keep the proxy untouched as far as the

underlying work it was doing.

2. Reduce the number of threads to match

the number of cores on the machine.

3. Insert under the proxy a framework that

could later be reused for other purposes.

This led me to carefully craft a “dispatcher”
framework that would help me accomplish all
three goals.

In the middle of the rewrite, after | had got-
ten the framework pretty well complete and the
proxy running on it, | began having issues with
long-term stress testing. After deep debugging, |
realized one of my problems was that | really did
not fully understand the interactions that
kqueues and sockets have. | found myself asking
questions like:

a) What happens when | delete the kqueue

event for a socket descriptor, yet do not close

the socket?

b) Could | possibly see stale queued events

that were yet to be read?

¢) How does connect interact with kqueue?

d) What about listen?

e) What is the difference between all of the

kqueue flags that | can add on to events and

when do | use them properly?

f) What is the meaning of some of the error

returns (EV_ERROR) and does that cover all my

error cases?

g) Will I always get an end of file condition

when the TCP connection closes gracefully

directly from the kqueue?

So the first thing | did is access my friend
Google and look for articles on kqueue (after of
course reading the man page multiple times
closely). Google found for me two articles, one
by Jonathan Lemon [1] and the other by Ted
Unangst [2]. Both articles are well worth reading
but did not answer my questions. In fact the Ted
Unangst article left me wondering if | did not
use EV_CLEAR and failed to read all the data on
a socket, | might miss ever seeing an event
again, could this be the source of some of the
problems | was seeing?

Since none of my questions were really
answered, the only thing that made sense for
me to do was write a special test application
that | could use to test out various features of
kqueues to answer my questions on our
Operating System release based on FreeBSD 9.2.
| decided to write this article so that you won't
have to ponder these questions or write a
kqueue test application. (You can find my test
program at http://people.freebsd.org/~rrs/
kqueue_test.c if you are interested.)

Kqueue Basics

In this section we will discuss the basic kqueue
and kevent calls with all the “filters,” “flags,”
and other goodies you need to know in order to
transition your socket program into a kqueue
based one. A lot of this information is in the
man page kqueue(2) (a highly recommended
source of information).

So the first thing you have to do is to actually
create a kqueue. A kqueue is yet another file
descriptor that you open (just like you do a sock-
et) with a special call kqueue(). There is nothing
special about this call, just like creating a socket
it returns a file descriptor index that you will use
for all future calls. Unlike sockets it has no argu-
ments whatsoever. It can fail, like any system

May/June 2014

25

KQ UE€UEC madness

call, and returns a negative 1, if it does fail, erro
will be set to the reason. Once you have a descrip-
tor returned from a successful kqueue call you use
this with the kevent() system call to make all the
magic happen.

The kevent() call has six arguments that it
accepts which are:

e Kg — The actual kq that you created via the
kqueue() call.

e Changelist — This is a pointer to an array of
structures of type kevent that describes changes
you are asking for in the kqueue.

e Nichanges — This is the number in the array
of changes in the Changelist.

e Eventlist — This is another pointer to an array
of structures of type kevent that can be filled in
by the O/S to tell you what events have been trig-
gered.

e Nevents — This is the bounding size of the
Eventlist argument so the kernel knows how many
events it can tell you about.

e Timeout — This is a struct timespec that rep-
resents a timeout value.

Like a poll() or select() the Timeout field allows
you to control how “blocking” the call will be. If
you set the argument to NULL, it will wait forever.
If the Timeout field is non-NULL it is interpreted to
be a timespec (tv_sec and tv_nsec) on the maxi-
mum time to delay before returning. One thing to
note, if you specify zero in the Nevents field then
the kevent() call will not delay even if a Timeout
is specified.

Now the kevent() call can be used in one of
three ways:

e As input to tell the kernel what events you
are interested in (for example when you are
setting up a bunch of socket descriptors, but
you are not yet interested in handling the
events). For this you would set Changelist to an
array of at least one (possibly more) kevents
and Nchanges to the number in the array. The
Eventlist field would be set to NULL and the
Nevents field would be set to 0.

e As only output, so you can find out what
events have happened (for example when you
are running in an event loop processing events,
but possibly not setting any new ones in). To
do this you would have the Changelist pointer
set to NULL, the Nichanges set to 0, but
Eventlist set to a pointer of an array of kevents
you want filled and Nevents to the length of
that array.

e The final way you can use it is to fill both
sets, the in and the out, so that as you go in
and wait for an event (or events) you can

FreeBSD Journal

change what is being waited upon. This is use-

ful in an event loop to minimize the number of

kernel system calls you are making.

So that, in a nutshell, describes the calls and
their use, but what is this kevent structure that
you keep talking about? Well a kevent structure
looks as follows:

AR R AR RN RRRARRARA RO I

struct kevent ({
uintptr t ident;
short filter;
u short flags;
u_int fflags;
intptr t data;
void *udata;

}i

There is also a macro that is part of the event
system that is a utility function that helps you
setup this structure called EV_SET(). But first let’s
go through each field and describe what you put
into it to get the results that you want:

e jdent — This field is the identifier that you
wish to have watched. In the case of a socket it
would be the socket descriptor. For other kqueue
calls it may be something else besides a descriptor.
Each type of event to watch for specifies what the
ident is made up of (generally it is some form of
file descriptor, but in some cases its not e.g. a
process id is used in one instance).

e filter — This field is the actual request that
you are asking the kernel to watch for. The follow-
ing list is the current filters that you can setup:

EVFILT_READ — A read filter looking for read events on

a file or socket. This will be one of the filters we cover

in a lot more detail.

EVFILT_WRITE — A write filter looking for when we can

write to a file or socket descriptor. Again this will be

one of the filter types that we take a closer look at.

EVFILT_AIO — asynchronous input output filter used in

conjunction with the aio calls (aio_read()/aio_write()).

For this article we will not discuss this kqueue event.

EFILT_VNODE — A file system change on a particular

file. This is a very useful event (e.g. the tail() utility uses

this when you are doing tail —f) but we won't be dis-
cussing this in this article.

EVFILT_PROC — A process event, such as a child’s death

or a fork of a child. Again a very useful event to watch

for, especially if you are writing a process manager, but
we won't cover it here.

EVFILT_SIGNAL — This event would come in when

a signal occurs (after the signal arrives). This is

again something for the reader to explore or

maybe a future article ;-)

EVFILT_USER —A user generated event, which
can be used to signal between threads or to
wake a kqueue() for some other specific user
defined reason (I use it for shutting down my
framework actually). Again this is not some-
thing | will cover in more detail but | encour-
age the curious to investigate on their own.

e flags — This field, on input (1), tells the kernel
what you want performed and on output (O) tells
you what happened. The flags that are currently
defined are:

EV_ADD(I) — Used when you wish to add your event

(for us a socket descriptor) to the kqueue.

EV_DELETE(]) — Delete a previously added event from

the kqueue.

EV_ENABLE(I) — Turn on a kqueue event. This may

seem redundant but its not, since when you add an

event, unless you specify this enable flag, it will not be
watched for. You also use this after an event has trig-
gered and you wish to re-enable it (if it does not auto-
matically re-enable itself).

EV_DISABLE(I) — This is the opposite of enable, so you

can send this down with a previously enabled filter and

have the event disabled, but the internal kqueue
structure inside the kernel will not be removed (thus
its ready to be re-enabled with EV_ENABLE when you
want).

EV_DISPATCH(I) — This flag tells

the kernel that after it sends you

an event, disable it un-

til such time as you re-enable it. {

EV_ONESHOT(I) — This flag tells

information. For example when a peer has “reset” the

TCP connection with a RST, you will get an EV_ERROR

with the data set to ECONNRESET or ECONNABORTED

(or possibly some other errno).

e fflags — are filter specific flags on the way in
and out. For example in the case of sockets you
can use this as a way to change the
SO_RCVLOWAT value (the data field would hold
the new value). On the way out, if EV_ERROR
were set, the fflags would hold the error just like
our favorite error field errno.

e data — This field is used on a per filter basis
to supply added information (e.g. the
SO_RCVLOWAT mark).

e udata — This is a handy little pointer that is
sent in to the kqueue call and will come up with
the event. It is very useful to associate state with
a particular event.

Now when sending kevents down to the kernel
to be watched for, it's important to realize that to
the kernel, the combination of a filter and ident
make up a unique entry. So, for example, if | send
down a EV_READ for socket descriptor 10 and a
EV_WRITE for socket descriptor 10, these end up
being two separate filters inside the kernel.

With these basics in mind one can write a sim-
ple event loop that would look something like:

int watch for reading(int fd)

int kg, not done, ret;

the kernel that when the event
occurs and the user retrieves the

struct kevent event;

event, automatically delete ret = -1;
(EV_DELETE) the kqueue entry kg = kqueue();
from the kernel. if (kg == -1) {

EV_CLEAR(I) — This toggles the

state of the filter right after you }
retrieve the event so it “re- not done = 1;

enables” itself automatically. EV_SET(&event, EVFILT READ, fd, EV_ADD|EV_ENABLE), 0, NULL);
Note that this can cause a "lot” if (kevent(kq, &event, 1, NULL, 0, NULL) == -1) {

of events to happen rapidly so close(kq);

this flag should be used very return(ret);

carefully. b

EV_EOF(0) — This flag indicates while(not done) {

the socket or descriptor has hit ret = kevent(kq, NULL, 0, &event, 1, NULL);

the end-of-file condition. For TCP i (meE == 4

this would be equivalent to read- /% got the event */

ing 0 from the socket (i.e. the w0 gemne = 0

return(ret);

peer will send no more data and zgzti:nje;-
has sent a FIN). } !
EV_ERROR(O) — This flag indi- }

cates an error has occurred usu-

return(ret);
ally the data field will have more

May/June 2014 | 27

28

|<q U UE madness

® So using a kqueue seems pretty straightfor-
ward, but let's now look a bit deeper into how
sockets and kqueue interacts as well as conside-r
ations we must make for a multi-threaded event
loop.

Kgueue, Socket Calls,
Multi-threading and Other
Mysteries

One of the first things you will want to do with a
socket program is connect to a server using the
connect(2) call. This, in the normal case, is a
blocking call, which can take some time before it
times out and gives you an error if the peer is
somewhere out on the internet and a long way
from you. Now to avoid this one would normally
set non-blocking I/O and then do a select or poll
for it. For our kqueue, we can do the same
thing. The trick to remember on the connect call,
however, is that you are not selecting on an
EV_READ, but instead you are selecting on an
EV_WRITE.

Now that | know this little fact seems obvious,
you connect so you can write to the server some
request right? Of course, when | first started
playing with kqueues it was not quite that obvi-
ous and it was not until | had read a second (or
was it a third) time through the man page that |
stumbled onto that little bit of wisdom.

Another little socket trick is the placement of
the kqueue call when on the server side you
setup for a non-blocking listen. You must place
the kqueue(2) call before you do the listen. If you
do not do this, your listen will never wake up on
your kqueue—even when it is full of pending
sockets waiting to be accepted. This again was a,
gee, ah-hah moment for me on a third read of
the manual.

Another mystery for me was in my reading of
Unangst there seemed to be an implication that
if | got a read event and failed to read all | was
told to read (the event .data field has the num-
ber of bytes ready to read when a socket wakes
up a kqueue for reading), | might not be told to
wake up again, unless some more data arrived.
Of course, | worked real hard to make sure |
always read the entire amount so that | would
not get “stranded” by some slow sending sock-
et. | even tried setting EV_CLEAR in the hopes of
not having to worry about this “race condition.”
Setting EV_CLEAR actually turned into a disaster,
however. This meant that many threads would
wake up on that same event due to scheduling
and context switching delay. Basically what most

FreeBSD Journal

socket applications need is the EV_DISPATCH.
Read what you want (or can) read and then
when you want do a re-enable. In my testing
with my little app (mentioned earlier) | proved
that:

* Adding EV_CLEAR will stream in events until
you either get the data read or shut off the
event.

* Using EV_DISPATCH and reading only part of
the message will result in another kqueue wake-
up once the event is re-enabled.

EV_ERROR and EV_EOF were another set of
mysteries. When did these wonderful flags get
applied? Well, as it turns out, the EV_EOF will be
returned once a FIN comes in from the other
side. To be more succinct its really every time a
kgueue event transpires on a socket and the
socket has the SBS_CANTRCVMORE flag set
against the receive socket buffer. What this
means is that as long as you have data to read,
you will continue to see the EV_EOF flag with
every subsequent kevent. The EV_ERROR howev-
er is a bit different. You usually get these when
the socket goes into an error state (ECONNRESET
or ETIMEDOUT). Basically if the EV_ERROR gets
set, the socket is pretty well washed up.

Now one other oddity, what | began seeing
was an appearance of a wakeup on an event |
had disabled. How could this occur? Was it that
queued up events that had not been read might
still be having an event that | would read later.
This could cause me major issues since that little
pointer in event.udata was being used to carry a
pointer that | may have done a free upon. After
continuing to see this happen under certain load
conditions, | had to dig to the bottom of it. With
my little test program | again proved that when
you remove an event all unread events are
removed for that socket (whew). So the oddity |
had been seeing had to be something else, or
did it?

If you remember the assignment | was given, a
tcp proxy, any of the proxys will have two TCP
descriptors for one flow. This is where my
headache came from. Since it was entirely possi-
ble (but rare) that both socket descriptors would
wake up at the same time and one of them
would have a “reset” on it, if that socket
descriptor got processed ahead of the other one,
due to locking order of the two threads, disaster
could strike. In effect, Thread1 would be destroy-
ing the flow, while Thread2 was patiently waiting
to get the lock that Thread1 was holding on that
flow. Thus, when the lock was released before
destruction, Thread2 would wakeup and start

accessing freed memory. This one was solved in a
very interesting way, but | will leave it to the read-
er to puzzle out a solution.

Conclusion

So what conclusion can we draw from all of this
madness?

e First and foremost, if you are going to play
with kqueues its best to get completely familiar
with them before diving in (either that or find
better reading on the internet than | did on how
to use them).

e Multi-threading with kqueues, especially
those that have more than one file descriptor ref-
erencing the same object can provide some inter-
esting challenges.

e There are some subtleties with kqueues in
their interactions with sockets that need to be
accounted for when writing the software (order is
very important as well as which type of event you
are interested in).

® The proper use of a kqueue can provide you
with a very efficient program that can handle
tasks with thousands of file descriptors with a
minimal set of overhead.

e Understanding and testing the functionality
of kqueues (with the before mentioned program)
can surely help you from going mad.

References

[1] Kqueue: A generic and scalable event notification
facility — Jonathan Lemon.
http://people.freebsd.org/~jlemon/papers/kqueue.pdf

[2] Experiences with kqueue — Ted Unangst, August 2009.
http://www.tedunangst.com/kqueue.pdf

Randall Stewart currently works for Adara
Networks Inc. as a Distinguished Engineer.
His current duties include architecting,
designing and prototyping Adara's next
generation routing and switching plat-
form. Previously Mr. Stewart was a
Distinguished Engineer at Cisco Systems.
In other lives he has also worked for
Motorola, NYNEX S&T, Nortel and AT&T
Communication.

Throughout his career he has focused
on Operating System Development, fault
tolerance, and call control signaling proto-
cols. Mr. Stewart is also a FreeBSD commuit-
ter having responsibility for the SCTP ref-
erence implementation within FreeBSD.

2014 EuroBSD
Conference
in Sofia, Bulgaria!;

; al
T Hin

EER
man INTER EXPO CENTER*|EC - emmemirenn
,ﬁ:j!mﬁ:j

InterExpo Congress Center,
147, Tsarigradsko shose blvd, Sofia, Bulgaria.

September 27-28th

FOR MAIN CONFERENCE

September 25-26th

FOR TUTORIALS

Call for Papers

Send Your Proposal to:

submission@eurobsdcon.org
Become a Sponsor

Contact Us Via:

oc-2014@eurobsdcon.org

EuroBSDcon is the premier European conference on the Open Source
BSD operating systems attracting highly skilled engineering profes-
sionals, software developers, computer science students, professors,

and users from all over the world. The goal of EuroBSDcon is to
exchange knowledge about the BSD operating systems, facilitate
coordination and cooperation among users and developers.

http://eurobsdcon.org

¢ Talks & Schedule

More Information on the Conference Planning

e Travel & Stay

Upcoming Details on Transportation and Hotels
e Venue & Location

Information and Directions to the Gonference Location

¢ Spouses Track and Trip
Visit the Historic City of Plovdiv, and Tour Rila Monastery

May/June 2014

