
Utilities like systat(1) and net-
stat(1) are great at giving us a few
starting points: they can, for instance,
show packet and bit rates on a per

interface or per protocol basis. More sophisticat-
ed tools will make use of the Berkeley Packet
Filter (BPF) to track individual packets as they
enter and leave the system; iftop (available in
ports as sysutils/iftop) uses this technique to dis-
play bit rates per 4-tuple. The venerable tcp-
dump(1) also uses the BPF interface to capture
and log packets in real time, making it possible to
answer questions based on post-capture analysis.

With FreeBSD 10, the kernel contains a new
set of DTrace probes which give users a great
deal of visibility into the inner workings of the
network stack. Specifically, users can now write
scripts based on packet send and receive events
in the IP, TCP and UDP layers of the FreeBSD ker-
nel, and additionally peer into the internal TCP
state of a given connection in real time. This is a
powerful addition to any programmer’s or sysad-
min’s toolbox, since it provides a framework for
answering arbitrary questions about the behavior
of FreeBSD’s IP stack; rather than being limited by
the output of existing utilities, DTrace allows

people
to develop
their own tools to
explore network activity, whether the motivation
is to monitor performance indicators, pinpoint
the source of problems, or to simply learn more
about network protocols.

This article will give an overview of each of the
new probes, explaining their use and providing
examples. It assumes a basic knowledge of and
familiarity with DTrace, but all of the examples
used this article are either dtrace(1) commands—
which can be run directly from the shell—or exe-
cutable scripts. They have all been developed and
tested on FreeBSD 10, and readers with an avail-
able testing system are encouraged to try and
run them to get a feel for DTrace’s capabilities.
They are available for download at
http://people.freebsd.org/~markj/dtrace/
network-providers/examples/.

12 FreeBSD Journal

FreeBSD offers
a plethora of
tools and tricks
for answering
questions about
activity in the
network stack.

BY MARK JOHNSTON

DTrace

May/June 2014 13

One caveat is that the
FreeBSD implementation
of these probes is rela-
tively new, so it is natu-
rally possible that you
may run into bugs or
hard-to-explain
behavior when
experimenting with
them. DTrace guar-
antees that scripts
cannot crash the sys-
tem or otherwise
corrupt its state, so
there is no danger in
running the examples
or any DTrace scripts
on FreeBSD. However,

if you run into prob-
lems making use of the

new probes or when
using DTrace, please

report them on the freebsd-
dtrace@FreeBSD.org mailing

list. Problems and questions
related to DTrace

which aren’t specific
to FreeBSD should be

reported on the
dtracediscuss@lists.dtrace.org

mailing list; many of the original and current
developers of DTrace are subscribed and will
readily respond to posts on this list.

DTrace on FreeBSD
Users of FreeBSD’s DTrace implementation will
possibly be familiar with the fbt provider, which is
used to trace function calls in the FreeBSD kernel
as they occur. This provider is exceptionally handy
for users already familiar with FreeBSD kernel
internals, but suffers from a few downsides:
• Its use requires a moderately good under-
standing of kernel code, which is an unreason-

ably high barrier to entry for most users wishing
to write their own scripts.
• The fbt probes are by definition tightly cou-
pled to kernel code; if the code underlying a
script changes, the script may fail to run or may
produce incorrect results. So scripts written for
one version of FreeBSD may not work on anoth-
er, and almost certainly won’t work on other
operating systems.
• Individual fbt probes often do not correspond
nicely to logical system events. Suppose you
wish to write a DTrace script which prints the
destination address of each IP packets as
FreeBSD hands them over to the network card
driver. It turns out that this is a discouragingly
difficult task: it involves instrumenting at least
four different functions in various parts of the
IPv4 and IPv6 code, each of which is called with
different arguments.

The new network probes allow users to write
scripts and trace network-related events using
an interface that doesn’t suffer from the prob-
lems above. They provide a stable and simple
window into the kernel’s activity: to trace the
destination address of IP packets, simply run:

Implementing this exact functionality using
the fbt provider would involve writing at least
fifty lines of fairly impenetrable D code, at least
by the author’s estimation after a half-hearted
and mostly failed attempt at the exercise. By
comparison, this example is quite straightfor-
ward and transparent, aside from the somewhat
enigmatic “args[2].” In English, it essentially
reads as “every time we send an IP packet, print
its destination address.” When this command is
run on the author’s laptop for several seconds
while simultaneously pinging an internet
address, we get the following output:

dtrace -n ‘ip:::send {printf(“%s”, args[2]->ip_daddr);}’
dtrace: description ‘ip:::send ‘ matched 1 probe
CPU ID FUNCTION:NAME

0 36564 :send 8.8.178.110
0 36564 :send 8.8.178.110
0 36564 :send 8.8.178.110
0 36564 :send 8.8.178.110

Example 1:

dtrace -n ‘ip:::send {printf(“%s”, args[2]->ip_daddr);}’

This is DTrace’s default output formatting. We can
get more control by adding “-x quiet” to the
dtrace(1) arguments and printing the newline
(“\n”) ourselves:

Within a D script, the same effect can be achieved
by adding the following line to the beginning of
the file:

The New Network Probes
The network probes discussed in this article origi-
nate from Solaris and are also present in illumos
and OS X. They belong to the new ip, tcp and
udp DTrace providers; the following command in
Example 2 will list them on your system:

From this we can see that FreeBSD now has
probes for IP, TCP and UDP packet send and
receive events. The IP send and receive probes (i.e.
ip:::send and ip:::receive) fire whenever
FreeBSD sends or receives an IPv4 or IPv6 packet,
respectively. Similarly, the TCP and UDP send and
receive probes fire when the kernel sends or
receives a TCP or UDP packet. As we can see, the
tcp provider contains additional probes correspon-
ding to TCP protocol events; for now, we will look
at the send and receive probes and construct sev-
eral examples.

Each of the network probes takes several argu-
ments which together describe the packet which
caused the probe to fire. The arguments them-

selves are each collections of related information.
For instance, the third argument to ip:::send
(“args[2]” in our earlier example) contains the
high-level IP fields common to both IPv4 and IPv6:

the IP version (ip_ver), the length of the payload
(ip_plength), and the source and destination
addresses (ip_saddr and ip_daddr). The
fourth argument contains information describing
the network interface used to transmit the packet,
and the fifth and sixth arguments respectively
yield the detailed IPv4 and IPv6 fields of the pack-
et. That is, if the packet uses IPv4, “args[4]”
will expose the fields of its IPv4 header, whereas
an IPv6 packet will have its header fields exposed
through “args[5]”. A comprehensive list and
descriptions of the ip:::send probe argu-
ments are available in [1], so they will not be dupli-

cated here; corresponding pages are available for
the tcp and udp providers at [2] and [3] respective-
ly. Using the send and receive probes, we can print
output to the terminal for each packet in real time.
On a heavily loaded system, this will of course be
impractical; in this situation, users will want to
make use of DTrace’s data aggregation facilities or
add predicates to allow selective tracing of packets.
The following script prints basic information about
each TCP packet as it enters and leaves the system.
Note that forwarded TCP packets will not cause the
tcp probes to fire since they are not examined by
the TCP code.

Example 3 makes use of three probes. The
dtrace:::BEGIN probe is used to print column

14 FreeBSD Journal

Example 2:

dtrace -l -P ip -P tcp -P udp
ID PROVIDER MODULE FUNCTION NAME
36492 ip kernel receive
36493 ip kernel send
36494 tcp kernel accept-established
36495 tcp kernel accept-refused
36496 tcp kernel connect-established
36497 tcp kernel connect-refused
36498 tcp kernel connect-request
36499 tcp kernel receive
36500 tcp kernel send
36501 tcp kernel state-change
36502 udp kernel receive
36503 udp kernel send

DTrace

dtrace -x quiet -n ‘ip:::send {printf(“%s\n”, args[2]->ip_daddr);}’
8.8.178.110
8.8.178.110
8.8.178.110
8.8.178.110

#pragma D option quiet

May/June 2014 15

headers for the output of the tcp probe actions. As the
headers suggest, the tcp probes print the 4-tuple associ-
ated with each TCP packet, along with the TCP payload
size and the TCP flags. Some sample output shows
NAT’ed SSH, HTTP and IMAPS traffic:

Example 3:

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=10Hz

dtrace:::BEGIN
{

printf(“ %30s %-6s %30s %-6s %-6s %s\n\n”, “SADDR”, “SPORT”,
“DADDR”, “DPORT”, “BYTES”, “FLAGS”);

}

tcp:::receive,
tcp:::send
{

printf(“ %30s %-6u %30s %-6u %-6u (%s%s%s%s%s%s\b)\n”,
args[2]->ip_saddr, args[4]->tcp_sport,
args[2]->ip_daddr, args[4]->tcp_dport,
args[2]->ip_plength - args[4]->tcp_offset,
(args[4]->tcp_flags & TH_FIN) ? “FIN|” : “”,
(args[4]->tcp_flags & TH_SYN) ? “SYN|” : “”,
(args[4]->tcp_flags & TH_RST) ? “RST|” : “”,
(args[4]->tcp_flags & TH_PUSH) ? “PSH|” : “”,
(args[4]->tcp_flags & TH_ACK) ? “ACK|” : “”,
(args[4]->tcp_flags & TH_URG) ? “URG|” : “”);

}

SADDR SPORT DADDR DPORT BYTES FLAGS

fe80:3::fa1a:67ff:fe03:f659 22 fe80:3::250:b6ff:fe0e:a825 42705 36 (PSH|ACK)
fe80:3::fa1a:67ff:fe03:f659 22 fe80:3::250:b6ff:fe0e:a825 42705 628 (PSH|ACK)
fe80:3::250:b6ff:fe0e:a825 42705 fe80:3::fa1a:67ff:fe03:f659 22 0 (ACK)

fe80:3::fa1a:67ff:fe03:f659 22 fe80:3::250:b6ff:fe0e:a825 42705 100 (PSH|ACK)
fe80:3::250:b6ff:fe0e:a825 42705 fe80:3::fa1a:67ff:fe03:f659 22 0 (ACK)

192.168.0.27 41116 173.194.76.108 993 37 (PSH|ACK)
173.194.76.108 993 192.168.0.27 41116 20 (ACK)
173.194.76.108 993 192.168.0.27 41116 63 (PSH|ACK)

192.168.0.27 41116 173.194.76.108 993 0 (ACK)
173.252.102.241 443 192.168.0.27 50220 429 (PSH|ACK)

192.168.0.27 50220 173.252.102.241 443 911 (PSH|ACK)
173.252.102.241 443 192.168.0.27 50220 20 (ACK)

192.168.0.27 16039 31.13.69.160 443 37 (PSH|ACK)
31.13.69.160 443 192.168.0.27 16039 20 (ACK)

The tcp probe action is a single printf() call
which uses the third and fifth arguments to
tcp:::send and tcp:::receive; these
arguments contain the IP and TCP headers of the
corresponding packet and make it easy to retrieve
the 4-tuple associated with the packet. The TCP
payload size is a bit trickier: the IP header contains
the IP payload size, and the TCP header contains
the offset from the beginning of the TCP header
to the TCP payload; thus their difference gives the
size of the TCP payload. Note that the TCP pay-
load sizes reported by DTrace for outbound seg-
ments may be larger than the MSS for the con-
nection if TSO is enabled on the outbound inter-
face. Finally, args[4]->tcp_flags contains
the segment’s TCP flags, and the DTrace TCP
library (found in /usr/lib/dtrace/tcp.d on
FreeBSD) contains symbolic names for the each of
the TCP flags.

Though the script above nicely demonstrates
the information available through network
probes, it is not particularly useful except as a
learning tool since it generally prints an unman-
ageable amount of output on any system with
continuous TCP activity. Fortunately, DTrace makes
it easy to visualize aggregations of data, and the
network providers can be used to examine the
distributions of variables such as connection dura-
tion, latency, bitrates, packet count, and packet
size. Moreover, DTrace’s flexibility makes it possi-
ble to measure these quantities over virtually any
independent variable(s): by host, port, L3 proto-
col, or network interface. It is also possible to
examine network traffic on a per-process basis,
though on FreeBSD this currently requires a spe-
cial trick which will be shown later in the article.

A quick demonstration of this is given in
Example 4, which will print a per-interface his-

Example 4:

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=10Hz

ip:::send,
ip:::receive
{

@num[args[3]->if_name] = lquantize(args[2]->ip_plength, 0, 1500, 100);
}

DTrace

Example 5:

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=10Hz

tcp:::state-change
/(args[5]->tcps_state == TCPS_CLOSED && args[3]->tcps_state == TCPS_SYN_SENT) ||
(args[5]->tcps_state == TCPS_LISTEN && args[3]->tcps_state == TCPS_SYN_RECEIVED)/

{
dur[args[1]->cs_cid] = timestamp;

}

tcp:::state-change
/(args[3]->tcps_state == TCPS_CLOSING ||

args[3]->tcps_state == TCPS_FIN_WAIT_2 ||
args[3]->tcps_state == TCPS_LAST_ACK) &&

dur[args[1]->cs_cid] != 0/
{

@["Connection duration (ms)"] = quantize((timestamp - dur[args[1]->cs_cid]) / 1000000);
dur[args[1]->cs_cid] = 0;

}

16 FreeBSDJournal

May/June 2014 17

togram of IP payload sizes using a linear distribu-
tion. This script does not print anything to the
terminal while it is running; rather, it continuous-
ly collects data and prints a summary when it
exits, which can happen when the user enters
Ctrl-C or the script calls the built-in exit() func-
tion. In this case, the script runs until the user
ends it:

In this case, a sample output on a system with
a single active interface (wlan0 in this case) is

A system with multiple interfaces will print a
histogram for each interface.

For another example, we can use
the tcp:::state-change probe
in Example 5 to show the distribu-
tion of TCP connection durations.
This probe gives us the to and from
states when the transitions happen,
so we may measure durations by
recording a timestamp when either
• a connection transitions from
CLOSED to SYN-SENT, or
• a connection transitions from

LISTEN to SYN-RECEIVED.
We then consider a connection to have ended

once it enters the FIN-WAIT2, CLOSING or LAST-
ACK states, once this happens, we may record
the time difference between the two events. To
store the initial connection timestamps, we use
an array indexed by args[1]->cs_cid, an
opaque integer which uniquely identifies a con-
nection. That is, we can assume that multiple
simultaneous connections will not share a con-
nection ID. The full script then looks like this:

In the tcp:::state-change probe
args[5]->tcps_state gives the from-state,
and args[3]->tcps_state yields the to-
state. Note that the second probe checks
whether a timestamp for the connection exists
by verifying that dur[args[1]->cs_cid] is
non-zero: this is to ensure that we do not
record data for connections that already exist
when the script is started.

The examples presented thus far have hope-
fully convinced you of the potential of the net-
work providers as building blocks for network
tools, whether they are tailored to investigate
some specific problem, or to track data that is
difficult to obtain using existing monitoring
tools. However, most of the examples we have
seen so far could in principle be re-implemented
with custom programs that use the BPF to inter-
cept and inspect packets. On the other hand,
the TCP probes give us a window into the inter-
nal state of the associated TCP connection; this
is not accessible via BPF. This allows us to, for
instance, monitor the TCP state transitions of
connections as they occur:

wlan0
value————————- Distribution ————————- count

< 0 0
0 |@@@@@@@@@@@@@@@@@@@@@@@ 479

100 |@@@ 61
200 |@ 16
300 |@ 24
400 |@ 27
500 |@ 14
600 | 5
700 | 10
800 | 5
900 | 9

1000 | 5
1100 | 5
1200 |@ 11
1300 |@@@@@@@ 152
1400 | 0

18 FreeBSDJournal

The script in Example 6 records a per-connec-
tion timestamp of the last state change in the
“last” array, indexed by the connection ID stored
in args[1]->cs_cid. Each time a state transi-
tion occurs, the 4-tuple associated with the con-
nection is printed, along with the amount of time
elapsed since the last state transition and the
transition itself, e.g. “state-established ->
state-close-wait”.

The tcp_state_string array is defined in
/usr/lib/dtrace/tcp.d and provides string
representations of each of the TCP states.
Symbolic names for the states are also available,
e.g. TCPS_TIME_WAIT, TCPS_LAST_ACK.

Note that we clear entries in the “last” array
by setting them to 0 when TCP connections end,
i.e. when they enter the FIN-WAIT-2, CLOSING or
LAST-ACK states. At this point the connection
state inside the kernel is about to be torn down,
so the array entry will not be valid if the CID is
reused for a future connection.

Advanced Tricks
Earlier we mentioned that it was possible to track
network activity per process. In the future it will
hopefully become possible to access the PID of the
associated process through the network probe
arguments, but this is currently not possible
because of the way that the relevant data is organ-
ized within the kernel. However, using the fbt
provider it is possible to associate PIDs or process
names with the connection IDs available through
args[1]->cs_cid in the TCP and UDP probes.
The D code to accomplish this is somewhat
opaque; however, it is included in the example
below and can be reused in other scripts.

The following script in Example 7 prints a sum-
mary of per-process TCP activity every two sec-
onds, reporting the total number of bytes trans-
mitted and received over TCP, as well breakdown
by process and 4-tuple:

This script is built up of several pieces. The

Example 6

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=10Hz

dtrace:::BEGIN
{

printf(" %30s %-6s %30s %-6s %-9s\n", "LADDR", "LPORT",
"RADDR", "RPORT", "DELTA(us)");

}

int last[uint64_t];

tcp:::state-change
{

this->delta = last[args[1]->cs_cid] != 0 ?
(timestamp - last[args[1]->cs_cid]) / 1000 : 0;

last[args[1]->cs_cid] = timestamp;

printf(" %30s %-6u %30s %-6u %-9u %s -> %s\n",
args[3]->tcps_laddr, args[3]->tcps_lport,
args[3]->tcps_raddr, args[3]->tcps_rport,
this->delta,
tcp_state_string[args[5]->tcps_state],
tcp_state_string[args[3]->tcps_state]);

}

tcp:::state-change
/args[3]->tcps_state == TCPS_CLOSING ||
args[3]->tcps_state == TCPS_FIN_WAIT_2 ||
args[3]->tcps_state == TCPS_LAST_ACK/

{
last[args[1]->cs_cid] = 0;

}

dtrace:::BEGIN probe is used to initialize a
pair of global variables used to count the number
of TCP payload bytes that were transmitted and
received in the current interval; they are reset by
the profile:::tick-2sec probe, which
prints summary data to the terminal every two

seconds. The four FBT probes are used to popu-
late and clear the procs array, which maps con-
nection IDs to process names (e.g. “firefox” or
“sshd”). In particular, the
fbt::tcp_usr_attach probes fire when a new
TCP socket is created, the

Example 7:

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=10hz

dtrace:::BEGIN
{

in = 0;
out = 0;

}

fbt::tcp_usr_attach:entry
{

self->so = args[0];
}

fbt::tcp_usr_attach:return
/args[1] == 0 && self->so != NULL/
{

procs[(uintptr_t)self->so->so_pcb] = execname;
self->so = NULL;

}

fbt::sosend_generic:entry, fbt::soreceive:entry
/args[0]->so_proto->pr_protocol == IPPROTO_TCP/
{

procs[(uintptr_t)args[0]->so_pcb] = execname;
}

fbt::in_pcbdetach:entry
{

procs[(uintptr_t)args[0]] = 0;
}

tcp:::send
/procs[args[1]->cs_cid] != “”/
{

this->bytes = args[2]->ip_plength - args[4]->tcp_offset;

out += this->bytes;
@bytes[procs[args[1]->cs_cid], args[2]->ip_saddr, args[4]->tcp_sport,

args[2]->ip_daddr, args[4]->tcp_dport] = sum(this->bytes);
}

tcp:::receive
/procs[args[1]->cs_cid] != “”/
{

this->bytes = args[2]->ip_plength - args[4]->tcp_offset;

in += this->bytes;
@bytes[procs[args[1]->cs_cid], args[2]->ip_daddr, args[4]->tcp_dport,

args[2]->ip_saddr, args[4]->tcp_sport] = sum(this->bytes);
}

profile:::tick-2sec
{

out /= 1024;
in /= 1024; (Example 7 continues next page)

20

fbt::sosend_generic and
fbt::soreceive probes fire when a process
transmits or receives data over TCP, and the
fbt::in_pcbdetach probe fires when a TCP
connection is closed.

The remainder of the script performs the
actual per-process accounting. Each time the
TCP stack sends or receives a packet correspon-
ding to an entry in the procs array, the in and
out global variables are incremented appropri-
ately, and the bytes array is updated. This array
is indexed by process name and the 4-tuple of
the connection, and its contents are printed and
cleared in the profile:::tick-2sec probe.
This makes it possible to drill down into the TCP

usage of specific processes, a task which is
quite difficult without DTrace.

Of course, the script in Example 7 can be
modified to perform different types of per-
process or per-user accounting. For instance,
one could keep running totals rather than clear-
ing statistics every two seconds. When a
process exits (signaled by the proc:::exit
probe) its total TCP usage could be saved for
later analysis. Additionally, with a few tweaks,
Example 7 can be modified to track UDP usage
rather than TCP, as shown in Example 8.

As a final example, we demonstrate how
DTrace may be used to dig into some of the
more advanced aspects of the TCP protocol.

Example 8:

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=10hz

dtrace:::BEGIN
{

in = 0;
out = 0;

}

fbt::udp_attach:entry
{

self->so = args[0];
}

fbt::udp_attach:return
/args[1] == 0 && self->so != NULL/
{

procs[(uintptr_t)self->so->so_pcb] = execname;
self->so = NULL;

}

fbt::sosend_dgram:entry, fbt::soreceive:entry
/args[0]->so_proto->pr_protocol == IPPROTO_UDP/

(Example 8 continues next page)

(Example 7 continued)

printf(“%Y, TCP in: %6dKB, TCP out: %6dKB, TCP total: %6dKB\n”, walltimestamp,
in, out, in + out);

printf(“%-12s %-15s %5s %-15s %5s %9s\n”, “PROC”, “LADDR”, “LPORT”,
“RADDR”, “RPORT”, “SIZE”);

printa(“%-12s %-15s %5d %-15s %5d %@9d\n”, @bytes);
printf(“\n”);

trunc(@bytes);
in = 0;
out = 0;

}

Our main tool here is the fourth argument
(args[3]) passed to each of the TCP probes.
This argument contains information which
describes the internal state of the connection,
and is useful in exploring phenomena that are
not easily observed by examining the headers
in individual packets.

Here we use the TCP provider to detect the

arrival of out-of-order segments; specifically,
the script checks for inbound data packets
whose sequence numbers do not match the
next anticipated sequence number (accessed
through args[3]->tcps_rnxt). If FreeBSD
sees such a segment, it will add it to the con-
nection’s reassembly queue if there is space
available; otherwise it is dropped. Out-of-

(Example 8 continued)

{
procs[(uintptr_t)args[0]->so_pcb] = execname;

}

fbt::in_pcbdetach:entry
{

procs[(uintptr_t)args[0]] = 0;
}

udp:::send
/procs[args[1]->cs_cid] != “”/
{

/* Subtract UDP header size. */
this->bytes = args[4]->udp_length - 8;

out += this->bytes;
@bytes[procs[args[1]->cs_cid], args[2]->ip_saddr, args[4]->udp_sport,

args[2]->ip_daddr, args[4]->udp_dport] = sum(this->bytes);
}

udp:::receive
/procs[args[1]->cs_cid] != “”/
{

/* Subtract UDP header size. */
this->bytes = args[4]->udp_length - 8;

in += this->bytes;
@bytes[procs[args[1]->cs_cid], args[2]->ip_daddr, args[4]->udp_dport,

args[2]->ip_saddr, args[4]->udp_sport] = sum(this->bytes);
}

profile:::tick-2sec
{

out /= 1024;
in /= 1024;

printf(“%Y, UDP in: %6dKB, UDP out: %6dKB, UDP total: %6dKB\n”,
walltimestamp, in, out, in + out);

printf(“%-12s %-15s %5s %-15s %5s %9s\n”,
“PROC”, “LADDR”, “LPORT”, “RADDR”, “RPORT”, “SIZE”);

printa(“%-12s %-15s %5d %-15s %5d %@9d\n”, @bytes);
printf(“\n”);

trunc(@bytes);
in = 0;
out = 0;

}

May/June 2014 21

Further Reading
The purpose of this article was to present an introduction to the network
providers available in FreeBSD 10 and to give readers a feel for the sorts of
problems that the providers are well-suited to address. A reference for the
complete set of probes is available in [1-3], and they are also described in

the excellent DTrace book by Brendan Gregg and Jim Mauro[4].
[1] https://wikis.oracle.com/display/DTrace/ip+Provider

[2] https://wikis.oracle.com/display/DTrace/tcp+Provider
[3] https://wikis.oracle.com/display/DTrace/udp+Provider

[4] DTrace: Dynamic Tracing in Oracle Solaris,Mac OS X, and FreeBSD.
[5] https://people.freebsd.org/~markj/dtrace/network-providers/examples/

Mark Johnston is a software engineer living in Waterloo, Ontario. He completed a bachelor's
degree in mathematics at the University of Waterloo in 2013 and has been a FreeBSD user
since 2010. He is interested in all aspects of operating systems development, with a particular
emphasis on debugging and performance analysis utilities. Since obtaining a commit bit, his
main focus has been on improving FreeBSD's DTrace implementation. He can be reached via
email at markj@FreeBSD.org.

order segments may be the result
of packet drops or of having

multiple routes between the
TCP endpoints; in general,

they hurt throughput and
should be investigated if

they make up a large ratio of the total number
of segments in a connection. The script in
Example 9 counts out-of-order segments by
remote host address. It also computes the total
byte and packet counts for comparison. •

22 FreeBSD Journal

Example 9:

#!/usr/sbin/dtrace -s

#pragma D option quiet
#pragma D option switchrate=10Hz

tcp:::receive
/args[3]->tcps_state == TCPS_ESTABLISHED &&
args[2]->ip_plength - args[4]->tcp_offset > 0 &&
args[3]->tcps_rnxt != args[4]->tcp_seq/

{
@invorderb[args[3]->tcps_raddr] = sum(args[2]->ip_plength - args[4]->tcp_offset);
@invorderp[args[3]->tcps_raddr] = count();

}

tcp:::receive
/args[3]->tcps_state == TCPS_ESTABLISHED &&
args[2]->ip_plength - args[4]->tcp_offset > 0/

{
@valorderb[args[3]->tcps_raddr] = sum(args[2]->ip_plength - args[4]->tcp_offset);
@valorderp[args[3]->tcps_raddr] = count();

}

dtrace:::END
{

printf(“%-30s %-12s %-12s %-12s %-12s\n”, “RADDR”, “BYTES”,
“OOO BYTES”, “PACKETS”, “OOO PACKETS”);

printa(“%-30s %@-12d %@-12d %@-12d %@-12d\n”, @valorderb, @invorderb,
@valorderp, @invorderp);

}

