
•

30 FreeBSD Journal

J O U R N A L E D

soft-updates

By 
Marshall Kirk McKusick 
and Jeff Roberson

The soft updates DEPENDENCY

TRACKING SYSTEM was adopted by

FreeBSD in 1998 as an alternative to the

popular journaled file system technique. 

The soft-updates DEPENDENCY

TRACKING SYSTEM was adopted by

FreeBSD in 1998 as an alternative to the

popular journaled file system technique. 



hile the runtime performance and con-
sistency guarantees of soft updates are compa-
rable to journaled filesystems [Seltzer, Ganger,
McKusick et al, 2000], a journaled filesystem
relies on an expensive and time-consuming
background filesystem recovery operation after
a crash. 

This article outlines a method for eliminating
the expensive background or foreground whole-
filesystem check operation by using a small jour-
nal that logs the only two inconsistencies possi-
ble in soft updates. The first is allocated but
unreferenced blocks; the second is incorrectly
high link counts. Incorrectly high link counts
include unreferenced inodes that were being
deleted and files that were unlinked but open
[Ganger, McKusick, & Patt, 2000]. This journal
allows a journal-analysis program to complete
recovery in just a few seconds independent of
filesystem size.

After a crash, a variant of the venerable fsck
program runs through the journal to identify
and free the lost resources. Only if an inconsis-
tency between the log and filesystem is detect-
ed is it necessary to run the whole-filesystem
fsck. The journal is tiny, 16 Mbytes is usually
enough, independent of filesystem size.
Although journal processing needs to be done
before restarting, the processing time is typically
just a few seconds and in the worst case a
minute.

Compatibility with 
Other Implementations

It is not necessary to build a new filesystem to
use soft-updates journaling. Journaling is
enabled via tunefs and only requires a few spare
superblock fields and 16 Mbytes of free blocks
for the journal. These minimal requirements
make it easily enabled on existing FreeBSD
filesystems. The journal’s filesystem blocks are
placed in an inode named .sujournal in the root
of the filesystem and filesystem flags are set
such that older non-journaling kernels will trig-

ger a full filesystem check when mounting a
previously journaled volume. When mounting a
journaled filesystem, older kernels clear a flag
that shows that journaling is being done, so
that when the filesystem is next encountered by
a kernel that does journaling, it will know that
the journal is invalid and will ensure that the
filesystem is consistent and clear the journal
before resuming use of the filesystem.

Journal Format
The journal is kept as a circular log of segments
containing records that describe metadata oper-
ations. If the journal fills, the filesystem must
complete enough operations to expire journal
entries before allowing new operations. In prac-
tice, the journal almost never fills.

Each journal segment contains a unique
sequence number and a timestamp that identi-
fies the filesystem mount instance so old seg-
ments can be discarded during journal process-
ing. Journal entries are aggregated into seg-
ments to minimize the number of writes to the
journal. Each segment contains the last valid
sequence number at the time it was written to
allow fsck to recover the head and tail by scan-
ning the entire journal. Segments are variably
sized as some multiple of the disk block size
and are written atomically to avoid read/modi-
fy/write cycles in running filesystems.

The journal-analysis has been incorporated
into the fsck program. This incorporation into
the existing fsck program has several benefits.
The existing startup scripts already call fsck to
see if it needs to be run in foreground or back-
ground. For filesystems running with journaled
soft updates, fsck can request to run in fore-
ground and do the needed journaled operations
before the filesystem is brought online. If the
journal fails for some reason, it can instead
report that a full fsck needs to be run as the
traditional fallback. Thus, this new functionality
can be introduced without any change to the
way that system administrators start up their
systems. Finally, the invoking of fsck means that
after the journal has been processed, it is possi-
ble for debugging purposes to fall through and
run a complete check of the filesystem to
ensure that the journal is working properly.

The journal entry size is 32 bytes, providing a
dense representation allowing for 128 entries
per 4-Kbyte sector. The journal is created in a
single area of the filesystem in as contiguous an

March/April 2014 31

•

•

WW



allocation as is available. We considered spread-
ing it out across cylinder groups to optimize
locality for writes, but it ended up being so
small that this approach was not practical and
would make scanning the entire journal during
cleanup too slow.

The journal blocks are claimed by a named
immutable inode. This approach allows user-
level access to the journal for debugging and
statistics gathering purposes as well as providing
backwards compatibility with older kernels that
do not support journaling. We have found that
a journal size of 16 Mbytes is enough in even
the most tortuous and worst-case benchmarks.
A 16-Mbyte journal can cover over 500,000
namespace operations or 16 Gbyte of outstand-
ing allocations (assuming a standard 32-Kbyte
block size).

Modifications 
that Require Journaling

This subsection describes the operations that
must be journaled so that the information need-
ed to clean up the filesystem is available to fsck.

Increased Link Count
A link count may be increased through a hard
link or file creation. The link count is temporarily
increased during a rename. Here, the operation
is the same. The inode number, parent inode
number, directory offset, and initial link count
are all recorded in the journal. Soft updates
guarantees that the inode link count will be
increased and stable on disk before any directo-
ry write. The journal write must occur before
the inode write that updates the link count and
before the bitmap write that allocates the inode
if it is newly allocated.

Decreased Link Count
The inode link count is decreased through
unlink or rename. The inode number, parent
inode, directory offset, and initial link count are
all recorded in the journal. The deleted directory
entry is guaranteed to be written before the link
is adjusted down. As with increasing the link
count, the journal write must happen before all
other writes.

Unlink While Referenced
Unlinked yet referenced files pose a problem for
journaled filesystems. In POSIX, an inode’s stor-
age is not reclaimed until after the final name is
removed and the last reference is closed. Simply
leaving the journal entry valid while waiting for
applications to close their dangling references is

untenable as it will easily exhaust journal space.
A solution that scales to the total number of
inodes in the filesystem is required. At least two
approaches are possible, a replication of the
inode allocation bitmap, or a linked list of
inodes to be freed. We have chosen to use the
linked-list approach. 

In the linked-list case, which is employed by
several filesystems (xfs, ext4, etc.), the
superblock contains the inode number that
serves as the head of a singly linked list of
inodes to be freed, with each inode storing a
pointer to the next inode in the list. The advan-
tage of this approach is that at recovery time
fsck need only examine a single pointer in the
superblock that will already be in memory. The
disadvantage is that the kernel must keep an in-
memory, doubly-linked list so that it can rapidly
remove an inode once it is unreferenced. This
approach ingrains a filesystem-wide lock in the
design and incurs non-local writes when main-
taining the list. In practice we have found that
unreferenced inodes occur rarely enough that
this approach is not a bottleneck. 

Removal from the list may be done lazily but
must be completed before any re-use of the
inode. Additions to the list must be stable
before reclaiming journal space for the final
unlink, but otherwise may be delayed long
enough to avoid needing the write at all if the
file is quickly closed. Addition and removal
involve only a single write to update the preced-
ing pointer to the following inode.

Change of Directory Offset
Any time a directory compaction moves an
entry, a journal entry must be created describing
the old and new locations of the entry. The ker-
nel does not know at the time of the move
whether a remove will follow it, so currently all
offset changes are journaled. Without this infor-
mation fsck would be unable to disambiguate
multiple revisions of the same directory block.

Block Allocation and Free
When performing either block allocation or free,
whether it is a fragment, indirect block, directory
block, direct block, or extended attributes the
record is the same. The inode number of the file
and the offset of the block within the file are
recorded using negative offsets for indirect and
extended attribute blocks. Additionally, the disk
block address and number of fragments are includ-
ed in the journal record. The journal entry must be
written to disk before any allocation or free.

When freeing an indirect block only the root

32 FreeBSD Journal

JOURNALED soft-updates

•



of the indirect block tree is logged. Thus, for
truncation we need a maximum of 15 journal
entries, 12 for direct blocks and 3 for indirect
blocks. These 15 journal entries allow us to free
a large amount of space with a minimum of
journaling overhead. During recovery, fsck will
follow indirect blocks and free any descendants
including other indirect blocks. For this algorithm
to work, the contents of the indirect block must
remain valid until the journal record is free so
that user data is not confused with indirect block
pointers.

Additional Requirements 
of Journaling

Some operations that had not previously
required tracking under soft updates need to be
tracked when journaling is introduced. This sub-
section describes these new requirements.

Cylinder Group Rollbacks
Soft updates previously did not require any roll-
backs of cylinder groups as they were always the
first or last write in a group of changes. When a
block or inode has been allocated, but its journal
record has not yet been written to disk, it is not
safe to write the updated bitmaps and associat-
ed allocation information. The routines that write
blocks with ‘‘bmsafemap’’ dependencies now
rollback any allocations with unwritten journal
operations.

Inode Rollbacks
The inode link count must be rolled back to the
link count as it existed before any unwritten jour-
nal entries. Allowing it to grow beyond this count
would not cause filesystem corruption, but it
would prohibit the journal recovery from adjust-
ing the link count properly. Soft updates already
prevents the link count from decreasing before
the directory entry is removed, as a premature
decrement could cause filesystem corruption. 

When an unlinked file has been closed, its
inode cannot be returned to the inode freelist
until its zeroed-out block pointers have been
written to disk so that its blocks can be freed
and it has been removed from the on-disk list of
unlinked files. The unlinked-file inode is not
completely removed from the list of unlinked
files until the next pointer of the inode that pre-
cedes it in the list has been updated on disk to
point to the inode that follows it on the list. If
the unlinked-file inode is the first inode on the
list of unlinked files, then it is not completely
removed from the list of unlinked files until the
head-of-unlinked-files pointer in the superblock

has been updated on disk to point to the inode
that follows it on the list.

Reclaiming Journal Space
To reclaim journal space from previously written
records, the kernel must know that the opera-
tion the journal record describes is stable on
disk. This requirement means that when a new
file is created, the journal record cannot be freed
until writes are completed for a cylinder group
bitmap, an inode, a directory block, a directory
inode, and possibly some number of indirect
blocks. When a new block is allocated, the jour-
nal record cannot be freed until writes are com-
pleted for the new block pointer in the inode or
indirect block, the cylinder group bitmap, and
the block itself. Blocks pointers within indirect
blocks are not stable until all parent indirect
blocks are fully reachable on disk via the inode
indirect block pointers. To simplify fulfillment of
these requirements, the dependencies that
describe these operations carry pointers to the
oldest segment structure in the journal contain-
ing journal entries that describe outstanding
operations.

Some operations may be described by multiple
entries. For example, when making a new direc-
tory, its addition creates three new names. Each of
these names is associated with a reference count
on the inode to which the name refers. When one
of these dependencies is satisfied, it may pass its
journal entry reference to another dependency if
another operation on which the journal entry
depends is not yet complete. If the operation is
complete, the final reference on the journal record
is released. When all references to journal records
in a journal segment are released, its space is
reclaimed and the oldest valid segment sequence
number is adjusted. We can only release the old-
est free journal segment, since the journal is treat-
ed as a circular queue.

Handling a Full Journal
If the journal ever becomes full, we must prevent
any new journal entries from being created until
more space becomes available from the retire-
ment of the oldest valid entries. An effective way
to stop the creation of new journal records is to
suspend the filesystem using the mechanism in
place for taking snapshots. Once suspended,
existing operations on the filesystem
are permitted to complete, but new
operations that wish to modify the
filesystem are put to sleep until the
suspension is lifted. 

We do a check for journal space 

March/April 2014 33

•



34 FreeBSD Journal

before each operation that will change 
a link count or allocate a block. If we 

find that the journal is approaching a full
condition, we suspend the filesystem and expe-
dite the progress on the soft-updates work-list
processing to speed the rate at which journal
entries get retired. As the operation that did
the check has already started, it is permitted to
finish, but future operations are blocked. Thus,
operations must be suspended while there is
still enough journal space to complete opera-
tions already in progress. When enough journal
entries have been freed, the file system suspen-
sion is lifted and normal operations resume. 

In practice, we had to create a minimal sized
journal (4 Mbyte) and run scripts designed to
create huge numbers of link-count changes,
block allocations, and block frees to trigger the
journal-full condition. Even under these tests,
the filesystem suspensions were infrequent and
brief lasting under a second.

The Recovery Process
This subsection describes the use of the journal
by fsck to clean up the filesystem after a crash.

Scanning the Journal
To do recovery, the fsck program must first
scan the journal from start to end to discover
the oldest valid sequence number. We contem-
plated keeping journal head and tail pointers,
however, that would require extra writes to the
superblock area. Because the journal is small,
the extra time spent scanning it to identify the
head and tail of the valid journal seemed a rea-
sonable tradeoff to reduce the run-time cost of
maintaining the journal head and tail pointers.
So, the fsck program must discover the first
segment containing a still valid sequence num-
ber and work from there. Journal records are
then resolved in order. Journal records are
marked with a timestamp that must match the
filesystem mount time as well as a CRC to pro-
tect the validity of the contents.

Adjusting Link Counts
For each journal record recording a link
increase, fsck needs to examine the directory at
the offset provided and see whether the direc-
tory entry for the recorded inode number exists
on disk. If it does not exist, but the inode link
count was increased, then the recorded link
count needs to be decremented. 

For each journal record recording a link
decrease, fsck needs to examine the directory
at the offset provided and see whether the

directory entry for the recorded inode number
exists on disk. If it has been deleted on disk,
but the inode link count has not been decre-
mented, then the recorded link count needs to
be decremented. 

Compaction of directory offsets for entries
that are being tracked complicates the link
adjustment scheme presented above. Since
directory blocks are not written synchronously,
fsck must look up each directory entry in all its
possible locations.

When an inode is added and removed from
a directory multiple times, fsck is not able to
correctly assess the link count given the algo-
rithm presented above. The chosen solution is
to pre-process the journal and link together all
entries related to the same inode. In this way,
all operations not known to be committed to
the disk can be examined concurrently to
determine how many links should exist relative
to the known stable count that existed before
the first journal entry. Duplicate records that
occur when an inode is added and deleted at
the same offset many times are discarded,
resulting in a coherent count.

Updating the 
Allocated Inode Map

Once the link counts have been adjusted, fsck
must free any inodes whose link count has fall-
en to zero. In addition, fsck must free any
inodes that were unlinked, but still in use at
the time that the system crashed. The head of
the list of unreferenced inode is in the
superblock as described earlier in this article.
The fsck program must traverse this list of
unlinked inodes and free them. 

The first step in freeing an inode is to add all
its blocks to the list of blocks that need to be
freed. Next, the inode needs to be zeroed to
show that it is not in use. Finally, the inode
bitmap in its cylinder group must be updated
to reflect that the inode is available and all the
appropriate filesystem statistics updated to
reflect the inodes availability.

Updating the 
Allocated Block Map

Once the journal has been scanned, it provides
a list of blocks that were intended to be freed.
The journal entry lists the inode from which the
block was to be freed. For recovery, fsck
processes each free record by checking to see if
the block is still claimed by its associated inode.
If it finds that the block is no longer claimed, it
is freed. 

•

JOURNALED soft-updates





36 FreeBSD Journal

For each block that is freed either by the deal-
location of an inode, or through the identifica-
tion process described above, the block
bitmap in its cylinder group must be updated
to reflect that it is available and all the appro-
priate filesystem statistics updated to reflect its
availability. When a fragment is freed, the
fragment availability statistics must also be
updated.

Performance
Journaling adds extra running time and mem-
ory allocations to the traditional soft-updates
requirements and also additional I/O opera-
tions to write the journal. The overhead of the
extra running time and memory allocations
was immeasurable in the benchmarks that we
ran. The extra I/O was mostly evident in the
increased delay for individual operations to
complete. Operation completion time is usual-
ly only evident to an application when it does
an ‘‘fsync’’ system call that causes it to wait for
the file to reach the disk. Otherwise, the extra
I/O to the journal only becomes evident in
benchmarks that are limited by the filesystem’s
I/O bandwidth before journaling is enabled. 

In summary, a system running with jour-
naled soft updates will never run faster than
one running soft updates without journaling.
So, systems with small filesystems—such as an
embedded system—will usually want to run
soft updates without journaling and take the
time to run fsck after system crashes.

The primary purpose of the journaling proj-
ect was to eliminate long filesystem check
times. A 40-Tbyte volume may take an entire
day and a considerable amount of memory to
check.

We have run several scenarios to under-
stand and validate the recovery time.

A typical operation for developers is to
run a parallel buildworld. Crash recov-

ery from this case demonstrates time
to recover from moderate write
workload. A 250-Gbyte disk was
filled to 80% with copies of the

FreeBSD source tree. One copy was
selected at random and an 8-way

buildworld proceeded for 10 minutes before
the box was reset. Recovery from the journal
took 0.9 seconds. An additional run with tra-
ditional fsck was used to verify the safe recov-
ery of the filesystem. The fsck took about 27
minutes, or 1,800 times as long.

A testing volunteer with a 92% full 11-
Tbyte volume spanning 14 drives on a 3ware
RAID controller generated hundreds of
megabytes of dirty data by writing random
length files in parallel before resetting the
machine. The resulting recovery operation
took less than one minute to complete. A nor-
mal fsck run takes about 10 hours on this
filesystem. •

Marshall Kirk McKusick writes books
and articles, consults, and teaches classes
on Unix- and BSD-related subjects. While at
the University of California at Berkeley, he
implemented the 4.2BSD fast file system
and was the Research Computer Scientist at
the Berkeley Computer Systems Research
Group (CSRG), overseeing the develop-
ment and release of 4.3BSD and 4.4BSD. He
has twice been president of the board of
the Usenix Association, is currently a mem-
ber of the FreeBSD Foundation Board of
Directors, a member of the editorial board
of ACM Queue magazine and The FreeBSD
Journal, a senior member of the IEEE, and
a member of the Usenix Association, ACM,
and AAAS. You can contact him via email at
mckusick@mckusick.com.

Jeff Roberson is a consultant who lives on
the island of Maui in the Hawai’ian island
chain. When he is not cycling, hiking, or
otherwise enjoying the island, he gets paid
to improve FreeBSD. He is particularly
interested in problems facing server instal-
lations and has worked on areas as varied
as the kernel memory allocator, thread
scheduler, filesystems interfaces, and net-
work packet storage, 
among others. You can contact 
him via email at jroberson@
jroberson.net.

REFERENCES

G. Ganger, M. McKusick, & Y. Patt, “Soft Updates: A Solution to the Metadata Update Problem in Filesystems,”
ACM Transactions on Computer Systems 18(2), p. 127−153 (May 2000).

M. Seltzer, G. Ganger, M. K. McKusick, K. Smith, C. Soules, & C. Stein, “Journaling versus Soft Updates: Asynchronous 
Meta-data Protection in File Systems,” Proceedings of the San Diego Usenix Conference, pp. 71-84 (June 2000).


