
Annales Univ. Sci. Budapest., Sect. Comp. 37 (2012) 311–338

DECLARATIVE SCHEDULING

OF DATAFLOW NETWORKS

Gábor Páli

(Budapest, Hungary – Cluj-Napoca, Romania)

Communicated by Zoltán Horváth

(Received January 15, 2012; revised March 5, 2012;
accepted March 10, 2012)

Abstract. It is common for domain-specific applications to be supported
with a specialized model of computation. In the domain of digital signal
processing, dataflow networks are commonly employed for describing such
systems, and therefore to specify a way of execution. We have created a
model using a pure functional programming language, Haskell, to capture
such applications on a higher level that may be used to generate programs.
However, the run-time performance of the resulting code does not yet meet
the performance requirements of the field. We believe that the situation
may be improved by providing tools for the application programmer to
control how the program in question is scheduled and executed without
worrying about with the low-level and error-prone details too much.

1. Introduction

As part of our previous work on design and implementation of a coordina-
tion language framework for embedded domain-specific languages [12], we have
briefly touched the issue of executing specialized task graphs [1]. In our model,

Key words and phrases: Operating systems, functional programming, Haskell, domain-
specific languages, scheduling.
2010 Mathematics Subject Classification: 97P50.
1998 CR Categories and Descriptors: D.4.7.
The Project is supported by KMOP-2008.1.1.2-08/1-2008-0002, POSDRU/6/1.5/S/3-2008.

312 G. Páli

we created a set of workers (executors) dynamically pick and execute domain-
specific-language programs (tasks) as part of a dataflow graph. The number of
workers matches the number of processing units of the given hardware in the
ideal case. That latter may contribute to lowering the expectations from the
supporting run-time environment, eventually making the compiled graphs run
standalone on top of the bare metal. This is going to be described in nutshell
in Section 2.

However, during the preliminary performance tests, we have observed that
our first näıve stab at scheduling execution of graphs does not scale well for
multiple workers – which is not surprising as relations between tasks induced by
data dependencies in the dataflow graph are not enforced to be respected. To
earn guarantees for that, tasks may be partitioned into pools, though the opti-
mal organization of pools is hard to achieve automatically. It will be explained
in details in Section 3.

A sudden insipiration of advantages of embedded domain-specific functional
languages mixed with the need for heuristics from the programmer constructing
the application that the dataflow graph represents leads us to the concept of
declarative scheduling. Declarative scheduling allows the implementation of
domain-specific scheduling constraints that helps to abstract away from the
low-level scheduling details and rather focuses on the protocol implementation
itself. We will continue with its introduction in Section 4.

Since we are discussing a concept important to the field of operating sys-
tems, it is beneficial to explain how to translate the featured high-level de-
scriptions to a target language that is closer to the hardware, and what kind of
run-time support is required for them in practice. This is going to be illustrated
with the C programming language in Section 5. In relation to this, in order to
verify and demonstrate the advantages of our approach, we implemented some
measurements on performance and the code size in Section 6. Therefore, the
reader may have grounds to objectively judge the benefits.

Scheduling is still a research active topic that will be studied in details
and compared to our work in Section 7. Recent research work done on the
topic in the context of functional programming, databases and cloud computing
supports the idea that gives us a motivation to evaluate our concept in those
settings too.

2. Our dataflow model

Complex software applications, like operating systems, usually consist of
a set of routines that are combined and controlled from upper layers as basic
building blocks. With the growth of the application, it becomes a challenge
to keep up its maintainability and reliability. In our view, if we abstract away

Declarative scheduling 313

from the platform-dependent details by modelling the components and their
relationship on a higher level it results in a manageable design. We used a
pure functional programming language, Haskell, together with the technique of
language embedding to propose a solution achieving that goal. In this design,
the aforementioned routines are described as programs of dedicated domain-
specific languages, and there we extended the picture by adding a glue language,
called Flow on top of them for orchestration.

A prime example of that is a simple audio processing application which is
tailored from domain-specific programs written in the language for the domain,
called Feldspar [3]. The application reads digitalized stereo sound signals from
a sound device, applies an effect to it, then writes the result back to the device.
As today’s hardware usually supports concurrent execution of applications, our
goal would be to parallelize this processing by splitting the input signal by (left
and right) channels. Processing of channel data then may be split further into
smaller steps: first we calculate the spectrum of the signal, then the effect, and
finally, it is converted back to a waveform. The scheme of the application is
shown in Figure 1.

Audio Processing Application

Left Channel

Right Channel

Effect:
Null

Bandpass
Octave Up

...

Effect:
Null

Bandpass
Octave Up

...

Events

Sound
Input Split Sound

Output

FFT

FFT

Merge

IFFT

IFFT

Figure 1. An overview of a sample audio processing application

There can be also seen that the application works with events, control
instructions from the outside world to regulate its run-time behavior. Specif-
ically, the application supports switching between a predefined set of sound
effects (bandpass filtering, raising the pitch of sound by one octave), or set
the parameters for the effects (the lower and the upper bound for bandpass
filtering) dynamically.

314 G. Páli

Feldspar itself is a fine language for describing most of the application,
though it is restricted to the domain. By looking back at Figure 1, we can
note that while contents of the small boxes may be written in Feldspar, their
combinations and the circle-shaped elements may not. Feldspar does not tell
anything on how the programs should be run or organized into a working
application. Thus another linguistic “layer” has to be added on the top of it.

2.1. The Flow language

To propose a solution for this problem, we have defined the Flow language
that builds upon combinators to help to represent applications as data depen-
dency graphs with computation nodes inside. Such graphs are called dataflow
networks. Note that they have a domain-specific role as they express a loop in
an event-driven system that constantly receives a stream of input and produces
another stream of output as an answer. With Flow, it must be easy and con-
venient to construct applications on the shoulders of various domain-specific
languages.

Domain-specific-language programs are used in their wrapped forms as
nodes in the graph. Programs must have a special signature, they techni-
cally map an input (type a) to an output (type b). With wrapping, there may
be parameters (type c) assigned to the programs. A set of run-time parameters
associated with all the programs in the dataflow configuration is the global con-
figuration. Those are the parameters that may be changed when the system is
running. Note that this representation implicitly enables to compose events as
changes in the subset of parameters. Besides the global configuration, there are
nodes, called source nodes to receive input and sink nodes to produce output
as a way to communicate with the environment.

The connection between nodes is typed, ensured by the FlowType type class,
that guarantees the types used in the domain-specific languages can be always
translated to a common (sum) type, FT to encapsulate data for transferring.
It also establishes the method of communication between the languages them-
selves as each domain-specific language does not have to cross the boundaries
of the node.

By using the Flow language, the application in Figure 1 can be written in
a very succinct manner as follows.

audioproc = split --< (processLeft, processRight) >-- merge

where

processLeft = fft --> effectLeft --> ifft

processRight = fft --> effectRight --> ifft

where the functions split, merge, fft, and ifft are simple wrapped Feldspar

Declarative scheduling 315

programs implementing the operations suggested by their names. In addition
to that, the effectLeft and effectRight nodes are the specialization of the
following program.

effectFeld :: Data Index -> (Data Index, Data Index)

-> DVector (Complex Float) -> DVector (Complex Float)

effectFeld e bpp =

switch e (noneFeld,bandpassFeld bpp,octaveUpFeld)

where switch implements switchable routing between certain Feldspar pro-
grams based on the value of index.

2.2. Decomposition of Flow graphs

Each dataflow network can be translated further down to an abstract pro-
gram, an intermediate representation for the Flow compiler. Note that this
representation still may be considered platform-independent. Abstract pro-
grams are built up from two main components, tasks and channels, expressed
by the Program type. Note that the FlowT type here is used to denote the
actual type of the FT-type elements communicated in the channels.

type ChanT = FlowT

type Program a b c t = ([Task c t],[ChanT])

A task represents a run-to-completion operation to be executed on a sin-
gle processing unit without any interruption. The idea follows the hardware
configuration and specifications usually featured in the domain, where there
is only a limited support for preemption. Tasks communicate with each other
via the channels. Tasks behave like closed expressions over their input, output
channels and an actual state of the global configuration.

Task 1 Task 2
Task 3 Task 4

Task 5 Task 6 Task 7

Task 8 Task 9 Task 10Sound
input SplitChn. 1 Sound

output

FFT
(left)

Chn. 2

FFT
(rght)

Chn. 3 Merge Chn. 11

Effect
(left)

Chn. 4 IFFT
(left)

Chn. 5

Chn. 9

Effect
(rght)

Chn. 7 IFFT
(rght)

Chn. 8

Chn. 10

Figure 2. A potential decomposition of the audio processing application
into tasks and channels

Tasks and channels are derived from the data dependency graph by de-
composition: each node paired up with its incoming and outgoing edges as

316 G. Páli

channels is turned into a task. In Figure 2 such a decomposition is shown for
the audioproc application.

Tasks are given by the Task algebraic data type. It has two type parameters:
the first is the type of the global configuration (c), the second is the target
language (t) – that generated code for, and the platform that provides the
necessary abstractions to support running the given application. The exact
definition is omitted for the sake of clarity.

3. Obstacles in efficient execution

After the data dependency graph has been decomposed into a set of tasks
and a set of channels, it is ready to be executed – possibly on multiple processing
units. A näıve solution would be to run each task on a different execution
thread, but that would also require to spawn unbounded number of threads
in general – which is a waste of resources, and tasks can easily outnumber the
actual hardware execution units, forcing the run-time system implement time-
shared multitasking. On the contrary, today’s many- and multi-core hardware
(that is typically featured in such domain-specific systems, e.g. Tilera boards)
rather follows the trend of space-shared multitasking where the cost of context
switching may be spared by completely dedicating a core (or more) to a given
task for the entire time of its execution [16].

3.1. Task execution management

Hence our model relies on a run-time system that operates with a fixed
number of threads. Such threads are considered “workers” that are free to as-
sign (“grab”) a task for execution for themselves from a pool. Because workers
may pull in new tasks only when they have completed the previous one, the
scheme offers sharing the load between the processing units dynamically, which
is then incorporated as an implicit part of the model.

Execution of a task is as follows. Read the input channels, run the wrapped
program with the gathered input information and the actual state of the global
configuration, and finally place the results in the output channels. However,
channels operate as FIFO (First-In-First-Out) queues that have fixed maximal
lengths. Due to that, channels block writing when they are full, and block
reading when they are empty. When the input data cannot be read or the
output data cannot be written because any of its input and output channels
is blocked, a task cannot be neither run despite it was selected for execution.
Such “misses” in the scheduling may lead increased overhead costs where the

Declarative scheduling 317

processor spends more time on selecting from the tasks than doing any actual
work.

The abstract representation of channels in Haskell is as follows.

type Limit = Int

type Channel = (Limit,[FT])

A task pool is given as a list of Tasks waiting for execution.

type TaskPool c t = [Task c t]

There are two primary operations for task pools: take and drop. We are go-
ing to use the STM (Software Transactional Memory) [6] and the IO monads here
to describe their abstract semantics in Haskell. The STM monad implements
composable atomic memory transactions – all operations in an atomically

block will be completed at one or retried when the shared resource becomes
available again. Thus, the atomically function assumes proper synchroniza-
tion for accessing shared variables. Shared data is described as TVars (trans-
actional variables) that can be read by readTVar and written by writeTVar.

The take operation gets a task from the pool. If there is no task found in
the pool then it returns Nothing. Note that this is written as a single STM-block,
which may be composed further.

take :: TVar (TaskPool c t) -> STM (Maybe (Task c t))

take pool = do

t <- readTVar pool

case t of

(t:ts) -> do

writeTVar pool ts

return (Just t)

_ -> return Nothing

The drop operation puts a completed task back to the pool. It shall always
succeed as there must be enough place for the tasks in the pool.

drop :: TVar (TaskPool c t) -> Task c t -> STM ()

drop pool t = do

ts <- readTVar pool

writeTVar pool (ts ++ [t])

The introduced functions work with a program state (described by the
Program type). It contains the input to be processed (list of values of type
a), the generated output (list of values of type b) and a potentially infinite
series of states of the global configuration (list of values of type c), and the
state of the channels (as a list), respectively.

318 G. Páli

type State a b c t = ([a],[b],[c],[Channel])

Every worker receives references to a task pool and every worker accesses
the same global variables, now they are summed up as a composition of tuples.
First the worker tries to pick a task for itself: if succeeds, then it executes the
selected task. Otherwise, the execution of the given worker is suspended (which
is covered by the semantics of the STM monad hence not explicitly mentioned
here) and re-try later to avoid busy waiting. The updateStateWith function is
not detailed here – its purpose is to merge the values back to the global state
that were changed locally.

workerStep :: (FlowType a, FlowType b)

=> TVar (TaskPool c t) -> TVar (State a b c) -> STM ()

workerStep pool state = do

t <- take pool

s <- readTVar state

case t of

Just task -> do

updateStateWith state $ st task s

drop pool task

Nothing -> return ()

Here the workerStep function describes a single step in the endless loop
that a worker must implement.

worker :: (FlowType a, FlowType b)

=> TVar (TaskPool c t) -> TVar (State a b c) -> IO ()

worker pool state = forever . atomically $ workerStep pool state

Note that any task may be chosen from the pool. It would be the job of a
scheduler to pick a task for a worker, however, it is not required as it can be
expressed by take and drop. For now, let us suppose that take selects the first
task from the pool (as defined above), while drop concatenates the completed
task to the end of the pool (similarly).

That way we get the regular round-robin scheme, as presented in Figure 3.

In the case of multiple workers, the consequence of that strategy is not that
straightforward as tasks may get reordered in the pool based on their time
required for execution. This may cause problems in scheduling as if dependent
tasks (that are connected to the given task via one of the channels) are executed
in the wrong order, c.f. Figure 4. This could cause too many blocked tasks to
be selected for execution, which results in a massive slowdown.

Declarative scheduling 319

task pool

t1

Worker

take

t4t3t2 t1

drop

Figure 3. A single worker with a single pool

task pool

t1 t2

Worker#1take

t3

Worker#2

take

t4 t2 t1
dropdrop

Figure 4. Multiple workers over a single pool
The order of elements may change during parallel execution

That can be relaxed by building up more task pools by taking the de-
pendencies between tasks into consideration. It can be then implemented by
partitioning the tasks into layers. Each layer contains tasks whose parallel ex-
ecution would have bad effects on each other. Therefore, any of them may be
selected for running in an arbitrary order, and the chances for blocking will be
reduced to the minimum.

For example, consider the four tasks in Figure 3. Let us assume that they
are connected in a shape of a diamond, that is t2 and t3 depend on t1, while
t4 depends on t2 and t3. In this case, it would be better to create two pools:
one for t2 and t3, and one for t1 and t4 (Figure 5). That way, workers will not
violate the dependency ordering for the tasks.

task pool 1

task pool 2

t1 t4t4

Worker#1

take

t2 t3t3

Worker#2

take

drop

drop

Figure 5. Multiple workers with multiple pools

320 G. Páli

3.2. Memory management

Apart from processor time, tasks may require a chunk of memory of a given
size for their operation. The Flow language expects the applied domain-specific
language implementations to be able to provide hints on how much memory
is needed for running the wrapped program, called kernel here. In addition to
this, there is a constant memory requirement for each task, e.g. the buffers to
store data coming from or going to the channels.

Tasks get memory assigned when they are executed by a worker, and work-
ers can only allocate memory on their start. That is, workers must have enough
memory allocated to be able to run any task from the pool they are assigned to.
As it implies, dynamic re-allocation of memory is strongly avoided here because
they may degrade the performance (e.g. it may lead to fragmentation), and
it requires some support for dynamic memory management from the run-time
system. Assuming that sizes for the buffers and the kernel may be statically
determined at compile time, it can be derived how much memory is actually
needed for a given worker. It can be expressed by M(·) as follows.

M(w) = max

{
nk∑
i=0

S(I(k, i)) +

mk∑
j=0

S(O(k, o)) + S(H(k))
∣∣∣ k ∈ K(w)

}

where w is the worker, k is a kernel from a set of kernel from that the worker
my run (K(w)). The S(·) function determines the size for its parameter, and
H(·) specifies the elements required for running the given kernel. Finally, I(·, ·)
and O(·, ·) gives the nth input and output buffers for k, respectively.

Note that because of the max function above, certain kernels with high
memory needs may cause wasting memory. For example, if the number of
large-memory kernels is much more less than the number of small-memory ones,
the workers may still have to allocate that much memory because of the large
ones. That is, when memory requirements are not uniformly distributed among
kernels, worker memory allocations would take the largest one. A solution for
that would be also taking this into consideration when tasks are partitioned
into pools.

4. How to be declarative

To address the problems sketched up here, we propose three ways to enhance
the model with programmable scheduling, all of them are expressed in terms
of an extension with a restricted language.

Declarative scheduling 321

4.1. Marking boundaries for kernels

Note that because the kernel is the unit of execution, decomposing the Flow
graph into tasks is crucial to the performance of the given program. Viz. that
way the programmer gains some control over the granularity of the scheduling
quanta as tasks are not interrupted. The programmer may choose to describe
the application differently where the kernels are “fused” together in Feldspar,
that is, all the intermediate data structures are removed as a result of the
compilation. So, since there is no communication needed between the different
processing units because of that, the serialization and deserialization of data
may be simply optimized away. Moreover, as the Flow program enables the
programmer to work on a higher level, that is, the result is usually compact
and the details are left to a code generator, it is relatively easy to reorganize
the kernels.

processFeld :: Data Index -> (Data Index, Data Index)

-> DVector Float -> DVector Float

processFeld e bpp = ifftFeld . effectFeld e bpp . fftFeld

If respective specializations of processFeld were wrapped into kernels left
and right, then our example sample can be rewritten as follows, with less but
larger kernels.

audioproc’ = split --< (left, right) >-- merge

With the possibility of describing task pool in a similar high-level way, we
get the concept that we may call “declarative scheduling”: the user specifies the
way of how the program gets scheduled in terms of some high-level primitives
without dealing with the low-level ones rather then adding them automatically
as an increment of the combined use of the primitives.

4.2. Selectors

The basic idea is to mount a “selector” on the take operation. Here, it
is expressed as a function over the elements in the task pool. It implies the
following modification to the earlier definition of take.

take’ :: TVar (TaskPool c t) -> TVar (State a b c t)

-> Selector -> STM (Maybe (Task c t))

take’ pool state f = do

p <- readTVar pool

322 G. Páli

case p of

[] -> return Nothing

xs -> do

let (t,ts) = selectBy f xs state

writeTVar pool ts

return (Just t)

where the selector has the following type (given as a Generalized Abstract Data
Type, GADT).

data Selector :: * where

Next :: Selector

By :: Property -> Selector

Note that it has been applied together with the selectBy function which
is used to specify the abstract semantics for each of the primitives above in
Haskell.

selectBy :: Selector -> [Task c t] -> State a b c t

-> (Task c t, [Task c t])

As shown above, the Selector type contains only an abstract description on
how to pick the next task for execution. Brief explanation of the constructors is
as follows, albeit note that there may be further similar functions introduced.

Next. Pick the next available task in the pool independently of the current
state. This is the original behavior of the task function where the head
of the task pool list was chosen.

selectBy Next pool _ = (head pool, tail pool)

By. Select a task from the pool based on a certain property, described by the
Property type.

selectBy (By p) pool state =

(snd $ head mins, map snd $ tail mins ++ misc)

where

(mins,misc) = partition (\(s,t) -> s == m) scoredPool

m = minimum (map fst scoredPool)

score t = (byProperty p state t, t)

scoredPool = map score pool

For the definition of selectBy, we used the partition function from
Data.List standard Haskell module.

Declarative scheduling 323

Note that we could use only the By combinator as a primitive operator for
expressing selector functions. The distinction made here is rather categorical:
the current position of a task in the pool (which the selection was based on)
is not a property in the same sense as e.g. the length of its input queue. Ex-
pressing it as a property would also make the recognition of the given operator
harder at code generation, hence that cannot be simplified to get an optimized
translated version.

In the description above, the byProperty function was used to define se-
mantics for the evaluating a certain property for tasks, and it has the following
signature.

byProperty :: Property -> Task c t -> State a b c t -> Int

It is based on the Property type that is to list all the properties that may
be calculated for the tasks. An example of such a property is the maximal
input queue length.

qLen :: Property

qLen = QLen

which is represented by a data constructor function in the Property type.

QLen :: Property

whose semantics is expressed as follows.

byProperty QLen task (_,_,_,channels) =

case task of

TaskI _ _ -> 1

TaskO _ chs ->

maximum $ map (length . (channels !!)) chs

TaskK _ (K _ _ chs _) ->

maximum $ map (length . (channels !!)) chs

Here we use the received State value as the queueing information associated
with each task that has to be retrieved from there with indexing the global
channel table (channels).

Source nodes (TaskI) have to be handled specially: they do not have input
channels and it is assumed that they can always provide data. Therefore a
constant score is assigned to them. The selected constant here is 1, which
means the flow sips input only if there is no data inside to be forwarded, giving
priority to data processing operations in this way.

324 G. Páli

Because we want to get the task with the maximal queue length, the calcu-
lated score has to be inverted. To implement that, simple property transformers
can be introduced for the convenience of the users.

minimumOf :: Property -> Property

minimumOf = id

maximumOf :: Property -> Property

maximumOf = Invert

It requires the addition of the Invert constructor to the Property type,
with the following semantics.

Invert :: Property -> Property

byProperty (Invert p) task = negate $ byProperty $ p task

So choosing a task by the maximal queue length can be written as follows.

maxQLen = maximumOf qLen

4.3. Creating task pools

Besides selection, it is also possible to control how task pools are organized.
The purpose is to cover the problems of respecting data dependencies between
tasks to minimize the chances for picking an already blocked task (as we have
observed in Subsection 3.1) and uniform distribution of tasks by memory re-
quirements (see Subsection 3.2).

Controlling organization of task pools requires the tasks to be identified
somehow inside the application. Since the user has no exact knowledge on how
tasks are dervied, there must be a tool for tagging flows provided instead.

type Pool = (Int, Selector)

As we will see through the section, task pools are described as a Cartesian
product of an identifier (Int) and a selector (Selector). The former tells which
task pool we are talking about at the given point of the flow, and the latter
assigns a scheduler – as a function of the selector – to the pool.

In order to tag, pools have to be created first by the createPool function.
There the user has the freedom to pick an identifier for the pool to be created.
This will be exploited later.

Declarative scheduling 325

createPool :: Int -> Pool

createPool id = (id, defaultSelector)

Here a default selector is assigned to each fresh pool, which is actually the
previously characterized default behavior of the take function.

defaultSelector :: Selector

defaultSelector = Next

The scheduleBy function is used to override the semantics of the selector
for one of the pools.

scheduleBy :: Selector -> Pool -> Pool

scheduleBy s (id,_) = (id,s)

We can only refer to nodes (but not tasks) in the high-level representation
(see Section 2), so there we introduce an operator to implicitly annotate tasks
to be created through their parent sub-flow. In our opinion, it is safe to do this
as tasks are deterministically derived from the nodes (see Subsection 2.2).

infix 2 #=

(#=) :: (Backend t, FlowType a, FlowType b, FlowType c)

=> Pool -> Flow a b c t -> Flow a b c t

The #= operator annotates the given sub-flow of the Flow graph, assigning
every derived task to the specified pool (together with all of its properties)
during the decomposition. Such annotations may be then nested in a fashion
similar to nesting mathematical sets.

pool1 #= flow1 --> (pool2 #= flow2 --> flow3) --> flow4

In the example above, tasks created from flow1 and flow4 are added to
pool1, while tasks from flow2 and flow3 are added to pool2.

Note that pool tags are optional to use. If none of them is employed,
the compiler shall select one of the built-in heuristics for organizing the tasks
into pool and controlling the take and drop operations. It is because there
is a default pool, 0, which is automatically assigned to the entire flow to be
compiled. Therefore, there is a “root pool” built up that contains all the
tasks. Because of the style of nesting, this technically implies if there is no
tag associated for the given sub-flow, then this is going to be the root pool by
default. The same applies to the implicit source and sink nodes as well, i.e.
they will be always in pool 0.

326 G. Páli

Hence it may happen that we want to re-use an existing pool. We add the
usePool function to express a partial pool label, where only the identifier is
given.

usePool :: Int -> Pool

usePool = createPool

As the definition shows, it is actually a different name for createPool

though.

Note that both the partitioning of tasks and the specification of selectors
may be derived automatically. All that has to be done is to insert the pool
tags by a given algorithm instead of doing it manually.

4.4. Example

By using the concepts we have introduced in the section, audioproc may
be tagged in the following way to improve its performance.

[pool1,pool2] = map createPool [1,2]

audioproc = split --< (processLeft, processRight) >-- merge

where

processLeft = pool1 #= fft --> effectLeft --> ifft

processRight = pool2 #= fft --> effectRight --> ifft

This way three independent task pools are created for the Flow program,
grouping only the kernels that may be more or less executed independently of
each other. This is presented in Figure 6.

Pool 0

Pool 1

Pool 2

in split out

fft

fft

merge

effectLeft ifft

effectRight ifft

Figure 6. The audio processing application partitioned into three task pools

Declarative scheduling 327

This may be improved further with addition of a simple dynamic scheduler,
which picks a task with the longest input queue. We use the definition of
maxQLen from Subsection 4.2.

pool = scheduleBy maxQLen $ usePool 0

audioproc = pool #=

split --< (processLeft, processRight) >-- merge

where

processLeft = fft --> effectLeft --> ifft

processRight = fft --> effectRight --> ifft

5. Code generation and run-time support

For the Flow model, code generation depends on the target language and
platform. The approach does not restrict the choice of the target language
– that is why we used Haskell to describe the algorithms in their abstract
form earlier. The only requirement is there must be a mapping to that from
the abstract program representation and the domain-specific-language kernels.
For the rest of the document, we will use the C programming language as an
example, unless explicitly noted otherwise.

For each target, there shall be a compile function implemented which gen-
erates a series of definitions (i.e. code, expressed as a Haskell list below) for the
given target based on the name of the constructed flow. It must also contain
an initial state for the global configuration.

compile :: (Backend t, FlowType a, FlowType b, FlowType c,

Translation c (Types t)) => Flow a b c t -> c -> String

-> [Definition t]

The Translation type class describes a relation between types, stating that
there is a conversion from type a to type b if an instance for Translation a

b exists. It is used to express that the type presenting the global configuration
(c) may be translated to the target language.

During code generation, each node is translated to the target language by
invoking the associated domain-specific-language compiler and some outer glue
code is added to fit it for the run-time environment of the dataflow network to
be created. The goal is to maintain the mapping between the domain-specific
types and the Flow types in the backend. Besides that, there may be tasks in

328 G. Páli

the network that does not contain any kernel, but responsible for generating
input data or consuming output data. Their definition is not part of the high-
level program, so the user has to write code for them on the target language.

In addition to that, there must be a controller function. Its purpose is
manifold. It controls the life time of the system: before it is started, the
necessary initialization routines are run, and after it is finished, the run-time
system shuts itself down. The controller accesses the internals of the global
configuration therefore, it may change the parameters of the programs in the
network, which may be then used to generate events in run time. It can be
considered a delegated main() function of the application.

The generated code requires some run-time support to run. Those are the
primitives required for operating the model presented through the document:
task pools, workers, and message queues. The implementation of such abstrac-
tions depends on the platform where we want to run the system. The amount
of actual run-time support required from the given platform is a matter of
deployment. The software stack under the Flow program may consist of a con-
ventional operating system (e.g. a microkernel, a set of servers representing
system services or any POSIX-compliant system), and run-time libraries for
the target language, or it may be run directly on top of bare metal.

Here we briefly present a sample API for any POSIX-compatible operating
system.

struct worker_t;

struct taskp_t;

struct configuration;

struct taskinfo_t;

struct msgq_t;

typedef void (*task_ptr)(void *, struct configuration *);

The previously listed concepts are captured by the following (opaque) types:
worker t is a worker, taskp t is a task pool, and configuration is the global
configuration. The task ptr is only a technical type, which is a function
pointer. It points to the code of the corresponding task to be called (from
the worker) as a regular function with a chunk of memory and the global con-
figuration. Tasks in the array are stored in a taskinfo t structure, which
contains information on each of them, e.g. address the task body or the ad-
dresses of the associated queues. The msgq t structure holds all the run-time
information needed for working with message queues.

struct msgq_t * queue[QUEUE_COUNT];

struct taskinfo_t * task[TASK_COUNT];

Declarative scheduling 329

struct taskp_t * task_pool[TASK_POOL_COUNT];

struct configuration config;

The actual main() function is generated along those types for the Flow

program. It uses some global variables to maintain a state for the message
queues (queue with the length of QUEUE COUNT that is equal to the number of
channels in the abstract program), tasks (task with the length of TASK COUNT

that is equal to the number of tasks in the abstract program), a task pool
array (task pool with a size corresponding to the number of actual pools
(TASK POOL COUNT) in the entire program), and a global configuration (config).

The associated prototypes in the run-time system are the following.

struct worker_t *

worker_create(int, size_t, struct taskp_t *, struct taskinfo_t *,

struct configuration *, int);

void worker_destroy(struct worker_t *);

void worker_start(struct worker_t *);

void worker_stop(struct worker_t *);

We can create and destroy workers, and we can also start or stop them after
creation. This helps to follow the standard thread pooling pattern, where first
we create all workers and then they are started. If it is possible on the given
platform, processor affinity is set for each of them, so it is not allowed to move
threads between processors. The opposite happens on shutdown. In addition
to that, it can be also specified which pool to use, how much memory is given
to the worker to work with, and a value for suspending the execution when it
cannot find a task to run in the pool.

struct msgq_t * msgq_create(size_t);

void msgq_destroy(struct msgq_t *);

size_t msgq_send(struct msgq_t *, void *, size_t);

size_t msgq_recv(struct msgq_t *, void *, size_t);

int msgq_empty(struct msgq_t *, size_t);

int msgq_full(struct msgq_t *, size_t);

There can be message queues created and destroyed as well. We can send
and receive data over the queues, they represent the channels. The message
queues work with bytes without types. That is, we do not use typed channels
as the wiring has already been checked for correctness in the upper layer. It is
a direct translation of the FT type that shares the same purpose.

330 G. Páli

#define NO_TASK_FOUND (-1)

typedef int task_t;

typedef task_t (*task_selector)(struct taskp_t *);

typedef int (*task_property)(task_t);

struct taskp_t *

taskp_create(size_t, task_selector, task_property);

void taskp_destroy(struct taskp_t *);

void taskp_add(struct taskp_t *, task_t);

task_t taskp_take(struct taskp_t *);

void taskp_drop(struct taskp_t *, task_t);

Task index used for pointing to tasks within a pool is represented as an
integer, called task t here. Like in the previous abstractions, we can create and
destroy task pools, and add the indices of the assigned tasks to them by using
taskp add(), and get the next appropriate free index by calling taskp take().
When there is no task to be chosen, a special value, NO TASK FOUND is returned.
After the execution, the task drop() function is called to return the given task
to the pool. Note that there is no taskp remove() operation as task pools
should not be changed in run time and taskp add() is used only to build up
the pools.

When creating task pools, a selector (as task selector, a type synonym
for a function pointer) and a property (as task property, a function pointer
as well) optionally used for task selection is passed together with the size. The
selector must be a valid pointer, while the property may be NULL.

int task_selector_next(struct taskp_t *);

int task_selector_by(struct taskp_t *);

Selector receives the task pool to be handled. For the task selector by()

selector, it can access the configured property (passed at the invocation of
task create()) because it is stored as meta-information for the given pool.

int task_property_qlen(task_t);

Properties receive the task index only, so they can get all the task-related
information (via the taskinfo t structure) from the task array. Here a sample
prototype for the queue length property is given, and further similar function
may be implemented in addition to that.

As mentioned earlier, task pools may be also represented as queues where
the next task to be selected is on the top, so a “put” operation automatically

Declarative scheduling 331

picks that. For the Next selector that would correspond to a FIFO queue,
and for the By selector that would be a priority queue, where priorities are
calculated by the given property or a multi-level feedback queue, where the
tasks are moved between the levels in reflection to the changes in the scores.
Through the implementation the latter would be complicated as the priority
queue had to be reordered constantly as the generated scores are changing,
and multi-level queues had to be maintained in the same fashion. For that
very reason, we found it easier to implement the queues by functions. If the
number of elements in the pools are kept low, they may be an equally good
decision in our humble opinion.

6. Experimental results

To evaluate the proposed solution, we have implemented it through embed-
ding Flow, Selector, and Property into Haskell and working out a C code
generator for them, which are then supplemented to the Feldspar compiler.
We followed the specifications of the C run-time system described in Section 5
to implement that over the POSIX threading library, pthread. We used the
audioproc audio-processing application, mentioned in Section 2. The sources
were measured by sloccount(1)1 (version 2.26, default settings), where the
difference shown in the cost of implementation is out of question: the combina-
tion of Flow and Feldspar version is below 200 lines – SLOC: 147, while the
generated C code is above 1000 lines – SLOC: 1017. The size of the accompa-
nying client code written in C is of SLOC 89, while the run-time system is of
SLOC 367.

The performance evaluation was both done on a Dell 2950 server (2x4-
core Intel Xeon L5320 at 1.86 GHz) running FreeBSD/amd64 9-STABLE (of
Feb 26, 2012), using the default FreeBSD system C compiler (GCC 4.2.1)
and a TILExpress-20G board (64-core Tilera TILE64) running Linux/tile64

2.6.26.7-MDE-2.1.2.112814, using a Tilera-enabled version of GCC. In both
cases we compiled the C code with global compiler optimizations (-O2) en-
abled. Fortunately, both of them implement pthread, however some operating-
system-specific extensions had to be used to set processor affinity for the
threads.

We measured the per-second throughput in kilobytes of the constructed
dataflow network to see how efficiently scheduled it is. Note that the goal of
the application is to maintain a speed of about 172 KB/s as that is the required
bandwidth of a 44.1-kHz 16-bit stereo signal. Hence we modified the original
application by counting the received bytes to learn how much data can flow
through the network if there are no such limitations at the end. That is, both

1http://www.dwheeler.com/sloccount/

332 G. Páli

the source and sink nodes have unlimited bandwidth. The data is transferred
in 64-element chunks between the nodes.

Furthermore, we did not use more than 2 hardware threads because the
application can be conveniently cut only into two: both Figure 7 and Figure 8
indicate that it is still enough to achieve a stable doubled throughput. Having
hardware threads is also important as our future goal is to deploy such graphs
without the invervention of the pthread library. The weak output experienced
on the Tilera board is a consequence of the architecture, which features many
parallel but weak processing units, i.e. it demands parallelization of everything
possible, and currently Feldspar does not support code generation for those
boards (e.g. parallelization of loops).

In the measurements, we compared three different variations of the audioproc
example. The first version (Figure 7a, Figure 8a has a single pool with a single
worker, i.e. that is a single-threaded application with round-robin scheduling
between the tasks. It has a stable but slow throughput.

audioproc = split --< (processLeft, processRight) >-- merge

where

processLeft = fft --> effectLeft --> ifft

processRight = fft --> effectRight --> ifft

In the second variation (Figure 7b, Figure 8b),we do not change the high-
level program but näıvely launch 2 worker threads (in the automatically gen-
erated code) to execute tasks from the same task pool. Albeit it starts up
nicely, after a few seconds the performance dramatically collapses, even below
the single-threaded case.

Thus an enhanced improved version is suggested to maintain both the high
throughput and the stability. The results are displayed in Figure 7c, and Fig-
ure 8c. Note that while the previous version requires some implementation of
mutual exclusion for the task pool, the latter does not as every worker has its
own pool to work with.

pool0 = scheduleBy maxQlen $ usePool 0

pool1 = scheduleBy maxQlen $ createPool 1

audioproc’ = split’ --< (processLeft, processRight) >-- merge’

where

split’ = pool1 #= split

merge’ = pool0 #= merge

processLeft = pool0 #= fft --> effectLeft --> ifft

processRight = pool1 #= fft --> effectRight --> ifft

Declarative scheduling 333

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 5 10 15 20 25 30

K
B

/s

Time (sec)

(a) A single pool with a single worker

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 5 10 15 20 25 30

K
B

/s

Time (sec)

(b) A single pool with multiple (concurrent) workers

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 5 10 15 20 25 30

K
B

/s

Time (sec)

(c) Multiple (declaratively partitioned) pools with multiple workers

Figure 7. Performance results for running audioproc

on a Dell 2950 with 2 hardware threads

334 G. Páli

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30

K
B

/s

Time (sec)

(a) A single pool with a single worker

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30

K
B

/s

Time (sec)

(b) A single pool with multiple (concurrent) workers

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30

K
B

/s

Time (sec)

(c) Multiple (declaratively partitioned) pools with multiple workers

Figure 8. Performance results for running audioproc

on a TILExpress-20G board with 2 hardware threads

Declarative scheduling 335

7. Related work

Running and working with Haskell in the field of systems programming is
a constant topic of the joint project of Galois, Inc. and the Portland State
University, titled “High-Assurance Systems Programming” (HASP) [7]. In the
past the researchers of this group have worked with the House operating system
[5], which is implemented in Haskell. In Granuke’s master’s thesis [4] a branch
of House is introduced, titled Lighthouse, which integrates the Lightweight
Concurrency framework [8] for experimentation. As a result, the thesis fea-
tures an extensible operating-system-level scheduler programmed in Haskell.
It is similar to our thought as it tries to raise the process of development of
schedulers to an abstract level, however, it still closely sticks to the traditional
foundations. There the implemented scheduler is basically passive, that is, it
may be rather considered a collection of routines written in Haskell. There is
a simple interface defined but not for hints as we presented in the document.
Because House originally lacks the notion of thread priority, Lighthouse utilizes
that feature of the incorporated concurrency framework and extends handling
of priorities in many different ways. The resulting extensible scheduler frame-
work then facilitates easy implemenation of various scheduling policies. In our
case though, no concept of priority is introduced as competing program codes
are wrapped into cooperative tasks and the user is offered the opportunity to
organize herself the optimal execution scheme for Flow programs.

Recent works of Marlow et al. [10, 11] show that expressing workflow sys-
tems in functional languages is still a hot research topic indeed. The Par

monad is an extensive and generic tool to support parallel programming in a
very efficient way. It does not do any I/O, hence it is considered pure and,
therefore it can be used at many different places to describe similar (even dy-
namic) dataflow networks, where a scheduler can also be specified. But there
the scheduler interface is not for general consumption, rather only provided
as an “escape hatch” for relaxing certain situations. However, it uses many
tricks inside (like IORefs) to make it work in Haskell and does not care about
code generation. On the contrary, Flow concentrates on how to build auto-
matically generated programs supported by a minimalistic run-time system. It
then can be used for describing and compiling event-driven system programs
for embedded hardware, without requiring a working Haskell compiler for that
platform.

As an example of how to implement extensinble scheduling for a traditional
microkernel-based system, L4 [9], Ruocco [13] proposes a user-level fine-grained
adaptive real-time scheduling. This solution encourages developing systems
that are capable of adapting themselves to a given problem by observing certain
temporal properties of the execution. According to that paper, an optimal
scheduling requires a two-way communication between the application and the

336 G. Páli

scheduler: the application forwards its decisions to the scheduler, while the
scheduler respects them as much as it is possible. So there is an abstractions
API implemented for L4 in C to offer the user a customizable scheduler.

In [14] and [15], Tilgner presents a research project that aims to define
scheduling protocols in a declarative way for modern architectures, like web
services or cloud computing. The reasoning behind his work is indeed under-
standable as cloud computing is typically a multi-computer system where good
scheduling is cruical for the acceptable performance. In our case, the declarative
nature is rather tied to the instrumentation of the run-time system proposed
for our dataflow network model, and we use functional language techniques to
offer a simple compositional solution. In [2], the term “declarative” is meant
to characterize the data-oriented nature of the cloud computing solution of the
authors. They use the Overlog language in conjunction with Haddoop MapRe-
duce to work out declarative scheduling strategies for distributed systems.

8. Conclusion

In this paper, we presented some of the run-time aspects of our dataflow
network modelling language, Flow, and proposed solutions to the experienced
problems. The main contribution of the paper is to suggest the use functional-
language combinators to build up a composable scheduling policy framework
for a minimalistic dataflow language that relies on only a few abstraction to be
implemented on each platform. Moreover, most of the details of the schedul-
ing is implicitly implied by the model itself, helping the programmer to keep
focusing on the relevant moments of the domain.

Finally, we would like to thank Tamás Kozsik and the anonymous review-
ers for their valuable comments on the paper that greatly contributed to its
development, and both the FreeBSD Project and the Tilera Corporation for
providing professional hardware and software environment for testing and eval-
uation. This work is being supported by the Hungarian National Development
Agency (KMOP-2008.1.1.2) and Programul Operaţional Sectional Dezvoltarea
Resurselor Umane 2007–2013 (POSDRU/6/1.5/S/3-2008, Romania).

References

[1] Agrawal, K., C.E. Leiserson and J. Sukha, Executing task graphs
using work-stealing, in: Proc. of 24th IEEE International Symposium on
Parallel and Distributed Processing, IPDPS 2010, Atlanta, Georgia, USA,
April 19–23, 2010.

Declarative scheduling 337

[2] Alvaro, P., T. Condie, N. Conway, K. Elmeelegy, J.M. Heller-
stein and R. Scars, Boom analytics: Exploring data-centric, declarative
programming for the cloud, in: Proc. of EuroSys 2010, Paris, France, April
13–16, 2010.

[3] Axelsson, E. et al., Feldspar: A domain-specific language for digital
signal processing algorithms, in: Proc. of the 8th ACM/IEEE International
Conference on Formal Methods and Models for Codesign (MemoCode),
IEEE Computer Society, 2010.

[4] Granuke, K., Extensible Scheduling in a Haskell-Based Operating Sys-
tem, Master’s thesis, Portland State Universtity, 2010.

[5] Hallgren, T. and M.P. Jones, A principled approach to operating sys-
tem construction in Haskell, in: The 10th ACM SIGPLAN International
Conference on Functional Programming, 2005.

[6] Harris, T., S. Marlow, S. Peyton-Jones and M. Herlihy, Compos-
able memory transactions, in: Proc. of the 10th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP ’05),
Chicago Illinois, June 15–17, 2005.

[7] The High-Assurance Systems Programming Project (Hasp). Hasp Home
Page, http://hasp.cs.pdx.edu/, Date: 01-31-2012.

[8] Li, P., S. Marlow, S. Peyton Jones and A. Tolmach, Lightweight
concurrency primitives for GHC, Haskell Workshop 2007.

[9] Liedtke, J., On micro-kernel construction, in: Proc. of the 15th ACM
Symposium on Operating System Principles (SOSP), pp. 237–250, 1995.

[10] Marlow, S., R. Newton and S. Peyton Jones, A monad for deter-
ministic parallelism, in: Haskell ’11: Proc. of the 4th ACM SIGPLAN
Symposium on Haskell, Tokyo, Japan, ACM, 2011.

[11] Marlow, S., Parallel and concurrent programming in Haskell, in: Proc.
of Central European Functional Programming Summer School (CEFP),
Eötvös Loránd University, Budapest, June 14–24, 2011 (to appear).

[12] Páli, G., Extending little programs into big systems, in: Proc. of the
4th Central European Functional Programming School (CEFP), Budapest,
Hungary, June 14 – 24, 2011 (to appear).

[13] Ruocco, S., User-level fine-grained adaptive real-time scheduling via tem-
poral reflection, in: Proc. of the 27th IEEE Real-Time Systems Symposium
(RTSS), December 5–8, 2006, pp. 246–256.

[14] Tilgner, C., Declarative scheduling in highly scalable systems, in: Proc.
of the 2010 EDBT/ICDT Workshops, Lausanne, Switzerland, March 22–
26, 2010.

[15] Tilgner, C., B. Glavic, M.H. Böhlen and C. Kanne, Smile: En-
abling easy and fast development of domain-specific scheduling protocols,
in: Proc. of the 28th British National Conference on Databases (BNCOD),
Manchester, United Kingdom, July 12–14, 2011.

338 G. Páli

[16] Wentzlaff, D. and A. Agarwal, Factored operating systems (FOS):
The case for a scalable operating system for multicores, ACM SIGOPS
Operating System Review: Special Issue on the Interfaction among the
OS, Compilers, and Multicore Processors, April 2009.

G. Páli
Eötvös Loránd University,
Department of Programming Languages and Compilers,
Faculty of Informatics
Budapest
Hungary

Babeş-Bolyai University,
Department of Computer Science,
Faculty of Mathematics and Computer Science
Cluj-Napoca
Romania
pgj@elte.hu

